Publications

Export 29 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
S
Shipp, LE, Hamdoun A.  2012.  ATP-binding cassette (ABC) transporter expression and localization in sea urchin development. Developmental Dynamics. 241:1111-1124.   10.1002/dvdy.23786   AbstractWebsite

Background: ATP-binding cassette (ABC) transporters are membrane proteins that regulate intracellular concentrations of myriad compounds and ions. There are >100 ABC transporter predictions in the Strongylocentrotus purpuratus genome, including 40 annotated ABCB, ABCC, and ABCG multidrug efflux transporters. Despite the importance of multidrug transporters for protection and signaling, their expression patterns have not been characterized in deuterostome embryos. Results: Sea urchin embryos expressed 20 ABCB, ABCC, and ABCG transporter genes in the first 58 hr of development, from unfertilized egg to early prism. We quantified transcripts of ABCB1a, ABCB4a, ABCC1, ABCC5a, ABCC9a, and ABCG2b, and found that ABCB1a mRNA was 10100 times more abundant than other transporter mRNAs. In situ hybridization showed ABCB1a was expressed ubiquitously in embryos, while ABCC5a was restricted to secondary mesenchyme cells and their precursors. Fluorescent protein fusions showed localization of ABCB1a on apical cell surfaces, and ABCC5a on basolateral surfaces. Conclusions: Embryos use many ABC transporters with predicted functions in cell signaling, lysosomal and mitochondrial homeostasis, potassium channel regulation, pigmentation, and xenobiotic efflux. Detailed characterization of ABCB1a and ABCC5a revealed that they have different temporal and spatial gene expression profiles and protein localization patterns that correlate to their predicted functions in protection and development, respectively. Developmental Dynamics 241:11111124, 2012. (c) 2012 Wiley Periodicals, Inc.

Smital, T, Luckenbach T, Sauerborn R, Hamdoun AM, Vega RL, Epel D.  2004.  Emerging contaminants--pesticides, PPCPs, microbial degradation products and natural substances as inhibitors of multixenobiotic defense in aquatic organisms. Mutation research. 552:101-17.   10.1016/j.mrfmmm.2004.06.006   Abstract

The environmental presence of chemosensitizers or inhibitors of the multixenobiotic resistance (MXR) defense system in aquatic organisms could cause increase in intracellular accumulation and toxic effects of other xenobiotics normally effluxed by MXR transport proteins (P-glycoprotein (P-gps), MRPs). MXR inhibition with concomitant detrimental effects has been shown in several studies with aquatic organisms exposed to both model MXR inhibitors and environmental pollutants. The presence of MXR inhibitors has been demonstrated in environmental samples from polluted locations at concentrations that could abolish P-gp transport activity. However, it is not clear whether the inhibition observed after exposure to environmental samples is a result of saturation of MXR transport proteins by numerous substrates present in polluted waters or results from the presence of powerful MXR inhibitors. And are potent environmental MXR inhibitors natural or man-made chemicals? As a consequence of these uncertainties, no official action has been taken to monitor and control the release and presence of MXR inhibitors into aquatic environments. In this paper we present our new results addressing these critical questions. Ecotoxicological significance of MXR inhibition was supported in in vivo studies that demonstrated an increase in the production of mutagenic metabolites by mussels and an increase in the number of sea urchin embryos with apoptotic cells after exposure to model MXR inhibitors. We also demonstrated that MXR inhibitors are present among both conventional and emerging man-made pollutants: some pesticides and synthetic musk fragrances show extremely high MXR inhibitory potential at environmentally relevant concentrations. In addition, we emphasized the biological transformation of crude oil hydrocarbons into MXR inhibitors by oil-degrading bacteria, and the risk potentially caused by powerful natural MXR inhibitors produced by invasive species.

Swartz, SZ, Reich AM, Oulhen N, Raz T, Milos PM, Campanale JP, Hamdoun A, Wessel GM.  2014.  Deadenylase depletion protects inherited mRNAs in primordial germ cells. Development. 141:3134-3142.   10.1242/dev.110395   AbstractWebsite

A crucial event in animal development is the specification of primordial germ cells (PGCs), which become the stem cells that create sperm and eggs. How PGCs are created provides a valuable paradigm for understanding stem cells in general. We find that the PGCs of the sea urchin Strongylocentrotus purpuratus exhibit broad transcriptional repression, yet enrichment for a set of inherited mRNAs. Enrichment of several germline determinants in the PGCs requires the RNA-binding protein Nanos to target the transcript that encodes CNOT6, a deadenylase, for degradation in the PGCs, thereby creating a stable environment for RNA. Misexpression of CNOT6 in the PGCs results in their failure to retain Seawi transcripts and Vasa protein. Conversely, broad knockdown of CNOT6 expands the domain of Seawi RNA as well as exogenous reporters. Thus, Nanos-dependent spatially restricted CNOT6 differential expression is used to selectively localize germline RNAs to the PGCs. Our findings support a 'time capsule' model of germline determination, whereby the PGCs are insulated from differentiation by retaining the molecular characteristics of the totipotent egg and early embryo.

W
Whalen, K, Reitzel AM, Hamdoun A.  2012.  Actin polymerization controls the activation of multidrug efflux at fertilization by translocation and fine-scale positioning of ABCB1 on microvilli. Molecular Biology of the Cell. 23:3663-3672.   10.1091/mbc.E12-06-0438   AbstractWebsite

Fertilization changes the structure and function of the cell surface. In sea urchins, these changes include polymerization of cortical actin and a coincident, switch-like increase in the activity of the multidrug efflux transporter ABCB1a. However, it is not clear how cortical reorganization leads to changes in membrane transport physiology. In this study, we used three-dimensional superresolution fluorescence microscopy to resolve the fine-scale movements of the transporter along polymerizing actin filaments, and we show that efflux activity is established after ABCB1a translocates to the tips of the microvilli. Inhibition of actin polymerization or bundle formation prevents tip localization, resulting in the patching of ABCB1a at the cell surface and decreased efflux activity. In contrast, enhanced actin polymerization promotes tip localization. Finally, interference with Rab11, a regulator of apical recycling, inhibits activation of efflux activity in embryos. Together our results show that actin-mediated, short-range traffic and positioning of transporters at the cell surface regulates multidrug efflux activity and highlight the multifaceted roles of microvilli in the spatial distribution of membrane proteins.