Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2014
Gokirmak, T, Shipp LE, Campanale JP, Nicklisch SCT, Hamdoun A.  2014.  Transport in technicolor: Mapping ATP-binding cassette transporters in sea urchin embryos. Molecular Reproduction and Development. 81:778-793.   10.1002/mrd.22357   AbstractWebsite

One quarter of eukaryotic genes encode membrane proteins. These include nearly 1,000 transporters that translocate nutrients, signaling molecules, and xenobiotics across membranes. While it is well appreciated that membrane transport is critical for development, the specific roles of many transporters have remained cryptic, in part because of their abundance and the diversity of their substrates. Multidrug resistance ATP-binding cassette (ABC) efflux transporters are one example of cryptic membrane proteins. Although most organisms utilize these ABC transporters during embryonic development, many of these transporters have broad substrate specificity, and their developmental functions remain incompletely understood. Here, we review advances in our understanding of ABC transporters in sea urchin embryos, and methods developed to spatially and temporally map these proteins. These studies reveal that multifunctional transporters are required for signaling, homeostasis, and protection of the embryo, and shed light on how they are integrated into ancestral developmental pathways recapitulated in disease. Mol. Reprod. Dev. 81: 778-793, 2014. (c) 2014 Wiley Periodicals, Inc.

2012
Campanale, JP, Hamdoun A.  2012.  Programmed reduction of ABC transporter activity in sea urchin germline progenitors. Development. 139:783-792.   10.1242/dev.076752   AbstractWebsite

ATP-binding cassette (ABC) transporters protect embryos and stem cells from mutagens and pump morphogens that control cell fate and migration. In this study, we measured dynamics of ABC transporter activity during formation of sea urchin embryonic cells necessary for the production of gametes, termed the small micromeres. Unexpectedly, we found small micromeres accumulate 2.32 times more of the ABC transporter substrates calcein-AM, CellTrace RedOrange, BoDipy-verapamil and BoDipy-vinblastine, than any other cell in the embryo, indicating a reduction in multidrug efflux activity. The reduction in small micromere ABC transporter activity is mediated by a pulse of endocytosis occurring 20-60 minutes after the appearance of the micromeres - the precursors of the small micromeres. Treating embryos with phenylarsine oxide, an inhibitor of endocytosis, prevents the reduction of transporter activity. Tetramethylrhodamine dextran and cholera toxin B uptake experiments indicate that micromeres have higher rates of bulk and raft-associated membrane endocytosis during the window of transporter downregulation. We hypothesized that this loss of efflux transport could be required for the detection of developmental signaling molecules such as germ cell chemoattractants. Consistent with this hypothesis, we found that the inhibition of ABCB and ABCC-types of efflux transporters disrupts the ordered distribution of small micromeres to the left and right coelomic pouches. These results point to tradeoffs between signaling and the protective functions of the transporters.