Export 2 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q [R] S T U V W X Y Z   [Show ALL]
Guirguis, K, Gershunov A, Schwartz R, Bennett S.  2011.  Recent warm and cold daily winter temperature extremes in the Northern Hemisphere. Geophysical Research Letters. 38   10.1029/2011gl048762   AbstractWebsite

The winters of 2009-2010 and 2010-2011 brought frigid temperatures to parts of Europe, Russia, and the U. S. We analyzed regional and Northern Hemispheric (NH) daily temperature extremes for these two consecutive winters in the historical context of the past 63 years. While some parts clearly experienced very cold temperatures, the NH was not anomalously cold. Extreme warm events were much more prevalent in both magnitude and spatial extent. Importantly, the persistent negative state of the North Atlantic Oscillation (NAO) explained the bulk of the observed cold anomalies, however the warm extremes were anomalous even accounting for the NAO and also considering the states of the Pacific Decadal Oscillation (PDO) and El Nino Southern Oscillation (ENSO). These winters' widespread and intense warm extremes together with a continuing hemispheric decline in cold snap activity was a pattern fully consistent with a continuation of the warming trend observed in recent decades. Citation: Guirguis, K., A. Gershunov, R. Schwartz, and S. Bennett (2011), Recent warm and cold daily winter temperature extremes in the Northern Hemisphere, Geophys. Res. Lett., 38, L17701, doi:10.1029/2011GL048762.

Alfaro, EJ, Pierce DW, Steinemann AC, Gershunov A.  2005.  Relationships between the irrigation-pumping electrical loads and the local climate in Climate Division 9, Idaho. Journal of Applied Meteorology. 44:1972-1978.   10.1175/jam2315.1   AbstractWebsite

The electrical load from irrigation pumps is an important part of the overall electricity demand in many agricultural areas of the U.S. west. The date the pumps turn on and the total electrical load they present over the summer varies from year to year, partly because of climate fluctuations. Predicting this variability would be useful to electricity producers that supply the region. This work presents a contingency analysis and linear regression scheme for forecasting summertime irrigation pump loads in southeastern Idaho. The basis of the predictability is the persistence of spring soil moisture conditions into summer, and the effect it has on summer temperatures. There is a strong contemporaneous relationship between soil moisture and temperature in the summer and total summer pump electrical loads so that a reasonable prediction of summer pump electrical loads based on spring soil moisture conditions can be obtained in the region. If one assumes that decision makers will take appropriate actions based on the forecast output, the net economic benefit of forecast information is approximately $2.5 million per year, making this prediction problem an important seasonal summer forecasting issue with significant economic implications.