Publications

Export 4 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D [E] F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
E
Gershunov, A.  1998.  ENSO influence on intraseasonal extreme rainfall and temperature frequencies in the contiguous United States: Implications for long-range predictability. Journal of Climate. 11:3192-3203.   10.1175/1520-0442(1998)011<3192:eioier>2.0.co;2   AbstractWebsite

Potential ENSO-related predictability of wintertime daily extreme precipitation and temperature frequencies is investigated. This is done empirically using six decades of daily data at 168 stations distributed over the contiguous United States. ENSO sensitivity in the extreme ranges of intraseasonal precipitation and temperature probability density functions is demonstrated via a compositing technique. Potential predictability of extremes is then investigated with a simple statistical model. Given a perfect forecast of ENSO, the frequency of intraseasonal extremes is specified as the average frequency of occurrence during similar-phased ENSO winters on record. Specification skill is assessed as the cross-validated proportion of local variance explained by this method. The skill depends on varying ENSO sensitivity in different geographic regions and quantile ranges and on consistency or variability from one like-phased ENSO event to another. ENSO sensitivity also varies according to the intensity of the tropical forcing; however, not always in the expected sense. Good predictability is likely for variables and in regions displaying a strong and consistent ENSO signal. This is found in some coherent regions of the United States for various combinations of frequency variable and ENSO phase. ENSO-based predictability of heavy and extreme precipitation frequency is potentially good along the Gulf Coast, central plains, Southwest, and in the Ohio River valley for El Nino winters and in the Southwest and Florida for La Nina winters. Not all large magnitude signals translate into significant specification skill. Extreme precipitation frequency in the Southwest is a good example of this. Extreme warm temperature frequency (EWF) is potentially predictable in the southern and eastern United States during Fl Nino winters and in the Midwest during the strongest events. La Nina winters exhibit potentially very good EWF predictability in a Large area of the southern United States centered on Texas. Despite showing coherent ENSO patterns, extreme cold temperature frequency (ECF) signals are mostly weak and inconsistent, especially during strong ENSO events. Curiously, specification skill improves in the northern United States, along the West Coast and in the southeast during weaker El Nino winters. An improvement in potential ECF predictability is also observed in the Midwest during weaker La Nina winters.

Gershunov, A, Barnett TP.  1998.  ENSO influence on intraseasonal extreme rainfall and temperature frequencies in the contiguous United States: Observations and model results. Journal of Climate. 11:1575-1586.   10.1175/1520-0442(1998)011<1575:eioier>2.0.co;2   AbstractWebsite

The signature of ENSO in the wintertime frequencies of heavy precipitation and temperature extremes is derived from both observations and atmospheric general circulation model output for the contiguous United States. ENSO signals in the frequency of occurrence of heavy rainfall are found in the Southeast, Gulf Coast, central Rockies, and the general area of the Mississippi-Ohio River valleys. Strong, nonlinear signals in extreme warm temperature frequencies are found in the southern and eastern United States. Extreme cold temperature frequencies are found to be less sensitive to ENSO forcing than extreme warm temperature frequencies. Observed ENSO signals in extreme temperature frequencies are not simply manifestations of shifts in mean seasonal temperature. These signals in the wintertime frequency of extreme rainfall and temperature events appear strong enough to be useful in long-range regional statistical prediction. Comparisons of observational and model results show that the model climate is sensitive to ENSO on continental scales and provide some encouragement to modeling studies of intraseasonal sensitivity to low-frequency climatic forcing. However, large regional disagreements exist in all variables. Continental-scale El Nino signatures in intraseasonal temperature variability are not correctly modeled. Modeled signals in extreme temperature event frequencies are much more directly related to shifts in seasonal mean temperature than they are in nature.

Gershunov, A, Douville H.  2008.  Extensive summer hot and cold spells under current and possible future climatic conditions: Europe and North America. Climate extremes and society. ( Diaz HF, Murnane RJ, Eds.).:20., Cambridge: Cambridge University Press Abstract
n/a
Favre, A, Gershunov A.  2006.  Extra-tropical cyclonic/anticyclonic activity in North-Eastern Pacific and air temperature extremes in Western North America. Climate Dynamics. 26:617-629.   10.1007/s00382-005-0101-9   AbstractWebsite

Synoptic extra-tropical cyclone and anticyclone trajectories have been constructed from mean daily sea level pressure (SLP) data using a new automated scheme. Frequency, intensity and trajectory characteristics of these transients have been summarized to form indices describing wintertime cyclonic and anticyclonic activity over the North-Eastern Pacific (east of 170 degrees W) during 1950-2001. During this period, the strength of anticyclones gradually diminished and their frequency became more variable, while cyclones intensified in a discrete shift with deeper lows and further southerly trajectories occurring since the mid-1970s. These changes in synoptic transients translate into anomalously low seasonal mean SLP in the Aleutian Low, a low-level circulation anomaly consistent with the positive phase of the North Pacific Decadal Oscillation, with positive sea surface temperature (SST) anomalies along the west coast of North America and negative in the central North Pacific Ocean. A link between cyclonic/anticyclonic activity and tropical SST anomalies also exists, but this link only becomes significant after the mid-1970s, a period that coincides with more southerly cyclone trajectories. Southward excursions of mid-latitude cyclones during El Ni (n) over tildeo/positive NPO winters accomplish the northward advection of tropical air and discourage the southward penetration of polar air masses associated with transient anticyclones. Naturally, these changes in cyclonic/anticyclonic activity directly impact surface air temperatures, especially at night. We document these profound impacts on observed wintertime minimum temperatures over Western North America.