Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2019
Guzman-Morales, J, Gershunov A.  2019.  Climate change suppresses Santa Ana winds of Southern California and sharpens their seasonality. Geophysical Research Letters. 46:2772-2780.   10.1029/2018gl080261   AbstractWebsite

We downscale Santa Ana winds (SAWs) from eight global climate models (GCMs) and validate key aspects of their climatology over the historical period. We then assess SAW evolution and behavior through the 21st century, paying special attention to changes in their extreme occurrences. All GCMs project decreases in SAW activity, starting in the early 21st century, which are commensurate with decreases in the southwestward pressure gradient force that drives these winds. The trend is most pronounced in the early and late SAW season: fall and spring. It is mainly determined by changes in the frequency of SAW events, less so by changes in their intensity. The peak of the SAW season (November-December-January) is least affected by anthropogenic climate change in GCM projections. Plain Language Summary Dry and gusty Santa Ana winds (SAWs) drive the most catastrophic wildfires in Southern California. Their sensitivity to the changing climate has been a matter of uncertainty and debate. We have assessed the response of SAW activity to global warming and describe these results in detail here. The overall decrease in SAW activity robustly projected by downscaled global climate models is strongest in the early and late seasons-fall and spring. SAWs are expected to decrease least at the peak of their season approximately December. Importantly, decreased SAW activity in the future climate is driven mainly by decreased frequency rather than the peak intensity of these winds. These results, together with what we know from recent literature about how precipitation is projected to change in this region, suggest a later wildfire season in the future.

2016
Guzman-Morales, J, Gershunov A, Theiss J, Li HQ, Cayan D.  2016.  Santa Ana Winds of Southern California: Their climatology, extremes, and behavior spanning six and a half decades. Geophysical Research Letters. 43:2827-2834.   10.1002/2016gl067887   AbstractWebsite

Santa Ana Winds (SAWs) are an integral feature of the regional climate of Southern California/Northern Baja California region, but their climate-scale behavior is poorly understood. In the present work, we identify SAWs in mesoscale dynamical downscaling of a global reanalysis from 1948 to 2012. Model winds are validated with anemometer observations. SAWs exhibit an organized pattern with strongest easterly winds on westward facing downwind slopes and muted magnitudes at sea and over desert lowlands. We construct hourly local and regional SAW indices and analyze elements of their behavior on daily, annual, and multidecadal timescales. SAWs occurrences peak in winter, but some of the strongest winds have occurred in fall. Finally, we observe that SAW intensity is influenced by prominent large-scale low-frequency modes of climate variability rooted in the tropical and north Pacific ocean-atmosphere system.