Publications

Export 3 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
A
Gershunov, A, Shulgina T, Ralph MF, Lavers DA, Rutz JJ.  2017.  Assessing the climate-scale variability of atmospheric rivers affecting western North America. Geophysical Research Letters.   10.1002/2017GL074175   Abstract

A new method for automatic detection of atmospheric rivers (ARs) is developed and applied to an atmospheric reanalysis, yielding an extensive catalog of ARs land-falling along the west coast of North America during 1948–2017. This catalog provides a large array of variables that can be used to examine AR cases and their climate-scale variability in exceptional detail. The new record of AR activity, as presented, validated and examined here, provides a perspective on the seasonal cycle and the interannual-interdecadal variability of AR activity affecting the hydroclimate of western North America. Importantly, AR intensity does not exactly follow the climatological pattern of AR frequency. Strong links to hydroclimate are demonstrated using a high-resolution precipitation data set. We describe the seasonal progression of AR activity and diagnose linkages with climate variability expressed in Pacific sea surface temperatures, revealing links to Pacific decadal variability, recent regional anomalies, as well as a generally rising trend in land-falling AR activity. The latter trend is consistent with a long-term increase in vapor transport from the warming North Pacific onto the North American continent. The new catalog provides unprecedented opportunities to study the climate-scale behavior and predictability of ARs affecting western North America.

Aguilera, R, Gershunov A, Benmarhnia T.  2019.  Atmospheric rivers impact California's coastal water quality via extreme precipitation. Science of the Total Environment. 671:488-494.   10.1016/j.scitotenv.2019.03.318   AbstractWebsite

Precipitation in California is projected to become more volatile: less frequent but more extreme as global warming pushes midlatitude frontal cyclones further poleward while bolstering the atmospheric rivers (ARs), which tend to produce the region's extreme rainfall. Pollutant accumulation and delivery to coastal waters can be expected to increase, as lengthening dry spells will be increasingly punctuated by more extreme precipitation events. Coastal pollution exposes human populations to high levels of fecal bacteria and associated pathogens, which can cause a variety of health impacts. Consequently, studying the impact of atmospheric rivers as the mechanism generating pulses of water pollution in coastal areas is relevant for public health and in the context of climate change. We aimed to quantify the links between precipitation events and water quality in order to explore meteorological causes as first steps toward effective early warning systems for the benefit of population health in California and beyond. We used historical gridded daily precipitation and weekly multiple fecal bacteria indicators at similar to 500 monitoring locations in California's coastal waters to identify weekly associations between precipitation and water quality during 2003-09 using canonical correlation analysis to account for the nested/clustered nature of longitudinal data. We then quantified, using a recently published catalog of atmospheric rivers, the proportion of coastal pollution events attributable to ARs. Association between precipitation and fecal bacteria was strongest in Southern California. Over two-thirds of coastal water pollution spikes exceeding one standard deviation were associated with ARs. This work highlights the importance of skillful AR landfall predictions in reducing vulnerability to extreme weather improving resilience of human populations in a varying and changing climate. Quantifying the impacts of ARs on waterborne diseases is important for planning effective preventive strategies for public health. (C) 2019 Elsevier B.V. All rights reserved.

S
Guzman-Morales, J, Gershunov A, Theiss J, Li HQ, Cayan D.  2016.  Santa Ana Winds of Southern California: Their climatology, extremes, and behavior spanning six and a half decades. Geophysical Research Letters. 43:2827-2834.   10.1002/2016gl067887   AbstractWebsite

Santa Ana Winds (SAWs) are an integral feature of the regional climate of Southern California/Northern Baja California region, but their climate-scale behavior is poorly understood. In the present work, we identify SAWs in mesoscale dynamical downscaling of a global reanalysis from 1948 to 2012. Model winds are validated with anemometer observations. SAWs exhibit an organized pattern with strongest easterly winds on westward facing downwind slopes and muted magnitudes at sea and over desert lowlands. We construct hourly local and regional SAW indices and analyze elements of their behavior on daily, annual, and multidecadal timescales. SAWs occurrences peak in winter, but some of the strongest winds have occurred in fall. Finally, we observe that SAW intensity is influenced by prominent large-scale low-frequency modes of climate variability rooted in the tropical and north Pacific ocean-atmosphere system.