Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
Ralph, FM, Wilson AM, Shulgina T, Kawzenuk B, Sellars S, Rutz JJ, Lamjiri MA, Barnes EA, Gershunov A, Guan B, Nardi KM, Osborne T, Wick GA.  2019.  ARTMIP-early start comparison of atmospheric river detection tools: how many atmospheric rivers hit northern California's Russian River watershed? Climate Dynamics. 52:4973-4994.   10.1007/s00382-018-4427-5   AbstractWebsite

Many atmospheric river detection tools (ARDTs) have now been developed. However, their relative performance is not well documented. This paper compares a diverse set of ARDTs by applying them to a single location where a unique 12-year-long time-series from an atmospheric river observatory at Bodega Bay, California is available. The study quantifies the sensitivity of the diagnosed number, duration, and intensity of ARs at this location to the choice of ARDT, and to the choice of reanalysis data set. The ARDTs compared here represent a range of methods that vary in their use of different variables, fixed vs. percentile-based thresholds, geometric shape requirements, Eulerian vs. Lagrangian approaches, and reanalyses. The ARDTs were evaluated first using the datasets documented in their initial publication, which found an average annual count of 19 +/- 7. Applying the ARDTs to the same reanalysis dataset yields an average annual count of 19 +/- 4. Applying a single ARDT to three reanalyses of varying grid sizes (0.5 degrees, 1.0 degrees-2.5 degrees) showed little sensitivity to the choice of reanalysis. While the annual average AR event count varied by about a factor of two (10-25 per year) depending on the ARDT, average AR duration and maximum intensity varied by less than +/- 10%, i.e., 24 +/- 2h duration; 458 +/- 44kg m(-1) s(-1) maximum IVT. ARDTs that use a much higher threshold for integrated vapor transport were compared separately, and yielded just 1-2 ARs annually on average. Generally, ARDTs that include either more stringent geometric criteria or higher thresholds identified the fewest AR events.

Polade, SD, Gershunov A, Cayan DR, Dettinger MD, Pierce DW.  2017.  Precipitation in a warming world: Assessing projected hydro-climate changes in California and other Mediterranean climate regions. Scientific Reports. 7   10.1038/s41598-017-11285-y   AbstractWebsite

In most Mediterranean climate (MedClim) regions around the world, global climate models (GCMs) consistently project drier futures. In California, however, projections of changes in annual precipitation are inconsistent. Analysis of daily precipitation in 30 GCMs reveals patterns in projected hydrometeorology over each of the five MedClm regions globally and helps disentangle their causes. MedClim regions, except California, are expected to dry via decreased frequency of winter precipitation. Frequencies of extreme precipitation, however, are projected to increase over the two MedClim regions of the Northern Hemisphere where projected warming is strongest. The increase in heavy and extreme precipitation is particularly robust over California, where it is only partially offset by projected decreases in low-medium intensity precipitation. Over the Mediterranean Basin, however, losses from decreasing frequency of low-medium-intensity precipitation are projected to dominate gains from intensifying projected extreme precipitation. MedClim regions are projected to become more sub-tropical, i.e. made dryer via pole-ward expanding subtropical subsidence. California's more nuanced hydrological future reflects a precarious balance between the expanding subtropical high from the south and the south-eastward extending Aleutian low from the north-west. These dynamical mechanisms and thermodynamic moistening of the warming atmosphere result in increased horizontal water vapor transport, bolstering extreme precipitation events.

Polade, SD, Pierce DW, Cayan DR, Gershunov A, Dettinger MD.  2014.  The key role of dry days in changing regional climate and precipitation regimes. Scientific Reports. 4   10.1038/srep04364   AbstractWebsite

Future changes in the number of dry days per year can either reinforce or counteract projected increases in daily precipitation intensity as the climate warms. We analyze climate model projected changes in the number of dry days using 28 coupled global climate models from the Coupled Model Intercomparison Project, version 5 (CMIP5). We find that the Mediterranean Sea region, parts of Central and South America, and western Indonesia could experience up to 30 more dry days per year by the end of this century. We illustrate how changes in the number of dry days and the precipitation intensity on precipitating days combine to produce changes in annual precipitation, and show that over much of the subtropics the change in number of dry days dominates the annual changes in precipitation and accounts for a large part of the change in interannual precipitation variability.

Favre, A, Gershunov A.  2006.  Extra-tropical cyclonic/anticyclonic activity in North-Eastern Pacific and air temperature extremes in Western North America. Climate Dynamics. 26:617-629.   10.1007/s00382-005-0101-9   AbstractWebsite

Synoptic extra-tropical cyclone and anticyclone trajectories have been constructed from mean daily sea level pressure (SLP) data using a new automated scheme. Frequency, intensity and trajectory characteristics of these transients have been summarized to form indices describing wintertime cyclonic and anticyclonic activity over the North-Eastern Pacific (east of 170 degrees W) during 1950-2001. During this period, the strength of anticyclones gradually diminished and their frequency became more variable, while cyclones intensified in a discrete shift with deeper lows and further southerly trajectories occurring since the mid-1970s. These changes in synoptic transients translate into anomalously low seasonal mean SLP in the Aleutian Low, a low-level circulation anomaly consistent with the positive phase of the North Pacific Decadal Oscillation, with positive sea surface temperature (SST) anomalies along the west coast of North America and negative in the central North Pacific Ocean. A link between cyclonic/anticyclonic activity and tropical SST anomalies also exists, but this link only becomes significant after the mid-1970s, a period that coincides with more southerly cyclone trajectories. Southward excursions of mid-latitude cyclones during El Ni (n) over tildeo/positive NPO winters accomplish the northward advection of tropical air and discourage the southward penetration of polar air masses associated with transient anticyclones. Naturally, these changes in cyclonic/anticyclonic activity directly impact surface air temperatures, especially at night. We document these profound impacts on observed wintertime minimum temperatures over Western North America.