Publications

Export 25 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F [G] H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
G
Gershunov, A, Barnett TP, Cayan DR, Tubbs T, Goddard L.  2000.  Predicting and downscaling ENSO impacts on intraseasonal precipitation statistics in California: The 1997/98 event. Journal of Hydrometeorology. 1:201-210.   10.1175/1525-7541(2000)001<0201:padeio>2.0.co;2   AbstractWebsite

Three long-range forecasting methods have been evaluated for prediction and downscaling of seasonal and intraseasonal precipitation statistics in California. Full-statistical, hybrid-dynamical-statistical and full-dynamical approaches have been used to forecast Fl Nino-Southern Oscillation (ENSO)-related total precipitation, daily precipitation frequency, and average intensity anomalies during the January-March season. For El Nino winters, the hybrid approach emerges as the best performer, while La Nina forecasting skill is poor. The full-statistical forecasting method features reasonable forecasting skill for both La Nina and El Nino winters. The performance of the full-dynamical approach could not be evaluated as rigorously as that of the other two forecasting schemes. Although the full-dynamical forecasting approach is expected to outperform simpler forecasting schemes in the long run, evidence is presented to conclude that, at present, the full-dynamical forecasting approach is the least viable of the three, at least in California. The authors suggest that operational forecasting of any intraseasonal temperature, precipitation, or streamflow statistic derivable from the available-records is possible now for ENSO-extreme years.

Gershunov, A, Shulgina T, Clemesha RES, Guirguis K, Pierce DW, Dettinger MD, Lavers DA, Cayan DR, Polade SD, Kalansky J, Ralph FM.  2019.  Precipitation regime change in Western North America: The role of atmospheric rivers. Scientific Reports. 9   10.1038/s41598-019-46169-w   AbstractWebsite

Daily precipitation in California has been projected to become less frequent even as precipitation extremes intensify, leading to uncertainty in the overall response to climate warming. Precipitation extremes are historically associated with Atmospheric Rivers (ARs). Sixteen global climate models are evaluated for realism in modeled historical AR behavior and contribution of the resulting daily precipitation to annual total precipitation over Western North America. The five most realistic models display consistent changes in future AR behavior, constraining the spread of the full ensemble. They, moreover, project increasing year-to-year variability of total annual precipitation, particularly over California, where change in total annual precipitation is not projected with confidence. Focusing on three representative river basins along the West Coast, we show that, while the decrease in precipitation frequency is mostly due to non-AR events, the increase in heavy and extreme precipitation is almost entirely due to ARs. This research demonstrates that examining meteorological causes of precipitation regime change can lead to better and more nuanced understanding of climate projections. It highlights the critical role of future changes in ARs to Western water resources, especially over California.

Gershunov, A, Guirguis K.  2012.  California heat waves in the present and future. Geophysical Research Letters. 39   10.1029/2012gl052979   AbstractWebsite

Current and projected heat waves are examined over California and its sub-regions in observations and downscaled global climate model (GCM) simulations. California heat wave activity falls into two distinct types: (1) typically dry daytime heat waves and (2) humid nighttime-accentuated events (Type I and Type II, respectively). The four GCMs considered project Type II heat waves to intensify more with climate change than the historically characteristic Type I events, although both types are projected to increase. This trend is already clearly observed and simulated to various degrees over all sub-regions of California. Part of the intensification in heat wave activity is due directly to mean warming. However, when one considers non-stationarity in daily temperature variance, desert heat waves are expected to become progressively and relatively less intense while coastal heat waves are projected to intensify even relative to the background warming. This result generally holds for both types of heat waves across models. Given the high coastal population density and low acclimatization to heat, especially humid heat, this trend bodes ill for coastal communities, jeopardizing public health and stressing energy resources. Citation: Gershunov, A., and K. Guirguis (2012), California heat waves in the present and future, Geophys. Res. Lett., 39, L18710, doi:10.1029/2012GL052979.

Gershunov, A, Barnett TP.  1998.  ENSO influence on intraseasonal extreme rainfall and temperature frequencies in the contiguous United States: Observations and model results. Journal of Climate. 11:1575-1586.   10.1175/1520-0442(1998)011<1575:eioier>2.0.co;2   AbstractWebsite

The signature of ENSO in the wintertime frequencies of heavy precipitation and temperature extremes is derived from both observations and atmospheric general circulation model output for the contiguous United States. ENSO signals in the frequency of occurrence of heavy rainfall are found in the Southeast, Gulf Coast, central Rockies, and the general area of the Mississippi-Ohio River valleys. Strong, nonlinear signals in extreme warm temperature frequencies are found in the southern and eastern United States. Extreme cold temperature frequencies are found to be less sensitive to ENSO forcing than extreme warm temperature frequencies. Observed ENSO signals in extreme temperature frequencies are not simply manifestations of shifts in mean seasonal temperature. These signals in the wintertime frequency of extreme rainfall and temperature events appear strong enough to be useful in long-range regional statistical prediction. Comparisons of observational and model results show that the model climate is sensitive to ENSO on continental scales and provide some encouragement to modeling studies of intraseasonal sensitivity to low-frequency climatic forcing. However, large regional disagreements exist in all variables. Continental-scale El Nino signatures in intraseasonal temperature variability are not correctly modeled. Modeled signals in extreme temperature event frequencies are much more directly related to shifts in seasonal mean temperature than they are in nature.

Gershunov, A, Douville H.  2008.  Extensive summer hot and cold spells under current and possible future climatic conditions: Europe and North America. Climate extremes and society. ( Diaz HF, Murnane RJ, Eds.).:20., Cambridge: Cambridge University Press Abstract
n/a
Gershunov, A, Michaelsen J.  1996.  Vertical variability of water vapor in the midlatitude upper troposphere. Contributions to Atmospheric Physics [Beitraege zur Physik der Atmosphaere.], Wiesbaden, Germany. 69:205-214. AbstractWebsite

Radiative, dynamical and phase-change considerations of tropospheric moisture, all point to moisture in the upper troposphere as a major determinant of the global climate. Hemispheric-scale vertical variability of upper-tropospheric moisture is observed through a multivariate statistical analysis of three years of monthly mean SAGE-II data for 1986-88. Midlatitude zonally averaged vertical variability of moisture in the upper troposphere is separated into coherent modes using principal components analysis. Bulk vertical variations in the upper troposphere are separated from a dynamical mode of variability representing vertical moisture gradient and horizontal advection. The procedure is repeated for the northern and southern midlatitudes. We discuss the vertical structure and temporal variability of the meaningful modes and observe a north-south hemispheric asymmetry in the characteristics of the vertical moisture variability. It is hypothesized that midlatitude wave cyclones are responsible for the poleward and vertical transport of water vapor to and in the midlatitude upper troposphere.

Gershunov, A, Schneider N, Barnett T.  2001.  Low-frequency modulation of the ENSO-Indian monsoon rainfall relationship: Signal or noise? Journal of Climate. 14:2486-2492.   10.1175/1520-0442(2001)014<2486:lfmote>2.0.co;2   AbstractWebsite

Running correlations between pairs of stochastic time series are typically characterized by low-frequency evolution. This simple result of sampling variability holds for climate time series but is not often recognized for being merely noise. As an example, this paper discusses the historical connection between El Nino-Southern Oscillation (ENSO) and average Indian rainfall (AIR). Decades of strong correlation (similar to -0.8) alternate with decades of insignificant correlation, and it is shown that this decadal modulation could be due solely to stochastic processes. In fact, the specific relationship between ENSO and AIR is significantly less variable on decadal timescales than should be expected from sampling variability alone.

Gershunov, A, Michaelsen J, Gautier C.  1998.  Large-scale coupling between the tropical greenhouse effect and latent heat flux via atmospheric dynamics. Journal of Geophysical Research-Atmospheres. 103:6017-6031.   10.1029/97jd03520   AbstractWebsite

The clear-sky greenhouse effect (GE) is determined primarily by the amount and vertical distribution of water vapor in the atmospheric column. GE hampers surface radiative cooling and is maintained through surface evaporative cooling. This paper examines the intimate space-time relationships between the patterns of radiative heating of the atmosphere and sui-face evaporative cooling. We use data derived from satellite and in situ observations to show that tropical maritime GE is decoupled in space and time from latent heat flux (LHF), its source of water vapor. Large scale transport of atmospheric water vapor responsible for the observed relationships between GE and LHF is discussed. The spatial patterns of average GE and LHF are imbedded in the Walker and Hadley circulations and reinforce these circulations with strong evaporative cooling in the subtropical highs and greenhouse warning in the equatorial trough zones. Throughout tropical areas characterized by strong seasonality, the seasonal cycles of GE and LHF are out of phase. Much of the moisture that feeds GE in these off equatorial regions is advected by the Hadley circulation from tropical moisture Source regions of the opposite hemisphere. An out-of-phase relationship between GE and LHF also turns up on El Nino-Southern Oscillation timescales, most notably in the central tropical Pacific. The "super" greenhouse effect (SGE), a situation when GE absorption increases more than colocated surface longwave emission, is a seasonal feature of extensive tropical off-equatorial areas where it is maintained by moisture convergence and convection. On interannual timescales, the same dynamical processes appear to assert the SGE in the central equatorial Pacific. GE and LHF regimes are also described for the equatorial cold tongue and warm pool regions.

Gershunov, A, Cayan DR, Iacobellis SF.  2009.  The great 2006 heat wave over California and Nevada: Signal of an increasing trend. Journal of Climate. 22:6181-6203.   10.1175/2009jcli2465.1   AbstractWebsite

Most of the great California-Nevada heat waves can be classified into primarily daytime or nighttime events depending on whether atmospheric conditions are dry or humid. A rash of nighttime-accentuated events in the last decade was punctuated by an unusually intense case in July 2006, which was the largest heat wave on record (1948-2006). Generally, there is a positive trend in heat wave activity over the entire region that is expressed most strongly and clearly in nighttime rather than daytime temperature extremes. This trend in nighttime heat wave activity has intensified markedly since the 1980s and especially since 2000. The two most recent nighttime heat waves were also strongly expressed in extreme daytime temperatures. Circulations associated with great regional heat waves advect hot air into the region. This air can be dry or moist, depending on whether a moisture source is available, causing heat waves to be expressed preferentially during day or night. A remote moisture source centered within a marine region west of Baja California has been increasing in prominence because of gradual sea surface warming and a related increase in atmospheric humidity. Adding to the very strong synoptic dynamics during the 2006 heat wave were a prolonged stream of moisture from this southwestern source and, despite the heightened humidity, an environment in which afternoon convection was suppressed, keeping cloudiness low and daytime temperatures high. The relative contributions of these factors and possible relations to global warming are discussed.

Gershunov, A.  1998.  ENSO influence on intraseasonal extreme rainfall and temperature frequencies in the contiguous United States: Implications for long-range predictability. Journal of Climate. 11:3192-3203.   10.1175/1520-0442(1998)011<3192:eioier>2.0.co;2   AbstractWebsite

Potential ENSO-related predictability of wintertime daily extreme precipitation and temperature frequencies is investigated. This is done empirically using six decades of daily data at 168 stations distributed over the contiguous United States. ENSO sensitivity in the extreme ranges of intraseasonal precipitation and temperature probability density functions is demonstrated via a compositing technique. Potential predictability of extremes is then investigated with a simple statistical model. Given a perfect forecast of ENSO, the frequency of intraseasonal extremes is specified as the average frequency of occurrence during similar-phased ENSO winters on record. Specification skill is assessed as the cross-validated proportion of local variance explained by this method. The skill depends on varying ENSO sensitivity in different geographic regions and quantile ranges and on consistency or variability from one like-phased ENSO event to another. ENSO sensitivity also varies according to the intensity of the tropical forcing; however, not always in the expected sense. Good predictability is likely for variables and in regions displaying a strong and consistent ENSO signal. This is found in some coherent regions of the United States for various combinations of frequency variable and ENSO phase. ENSO-based predictability of heavy and extreme precipitation frequency is potentially good along the Gulf Coast, central plains, Southwest, and in the Ohio River valley for El Nino winters and in the Southwest and Florida for La Nina winters. Not all large magnitude signals translate into significant specification skill. Extreme precipitation frequency in the Southwest is a good example of this. Extreme warm temperature frequency (EWF) is potentially predictable in the southern and eastern United States during Fl Nino winters and in the Midwest during the strongest events. La Nina winters exhibit potentially very good EWF predictability in a Large area of the southern United States centered on Texas. Despite showing coherent ENSO patterns, extreme cold temperature frequency (ECF) signals are mostly weak and inconsistent, especially during strong ENSO events. Curiously, specification skill improves in the northern United States, along the West Coast and in the southeast during weaker El Nino winters. An improvement in potential ECF predictability is also observed in the Midwest during weaker La Nina winters.

Gershunov, A, Shulgina T, Ralph MF, Lavers DA, Rutz JJ.  2017.  Assessing the climate-scale variability of atmospheric rivers affecting western North America. Geophysical Research Letters.   10.1002/2017GL074175   Abstract

A new method for automatic detection of atmospheric rivers (ARs) is developed and applied to an atmospheric reanalysis, yielding an extensive catalog of ARs land-falling along the west coast of North America during 1948–2017. This catalog provides a large array of variables that can be used to examine AR cases and their climate-scale variability in exceptional detail. The new record of AR activity, as presented, validated and examined here, provides a perspective on the seasonal cycle and the interannual-interdecadal variability of AR activity affecting the hydroclimate of western North America. Importantly, AR intensity does not exactly follow the climatological pattern of AR frequency. Strong links to hydroclimate are demonstrated using a high-resolution precipitation data set. We describe the seasonal progression of AR activity and diagnose linkages with climate variability expressed in Pacific sea surface temperatures, revealing links to Pacific decadal variability, recent regional anomalies, as well as a generally rising trend in land-falling AR activity. The latter trend is consistent with a long-term increase in vapor transport from the warming North Pacific onto the North American continent. The new catalog provides unprecedented opportunities to study the climate-scale behavior and predictability of ARs affecting western North America.

Gershunov, A, Cayan DR.  2003.  Heavy daily precipitation frequency over the contiguous United States: Sources of climatic variability and seasonal predictability. Journal of Climate. 16:2752-2765.   10.1175/1520-0442(2003)016<2752:hdpfot>2.0.co;2   AbstractWebsite

By matching large-scale patterns in climate fields with patterns in observed station precipitation, this work explores seasonal predictability of precipitation in the contiguous United States for all seasons. Although it is shown that total seasonal precipitation and frequencies of less-than-extreme daily precipitation events can be predicted with much higher skill, the focus of this study is on frequencies of daily precipitation above the seasonal 90th percentile (P90), a variable whose skillful prediction is more challenging. Frequency of heavy daily precipitation is shown to respond to ENSO as well as to non-ENSO interannual and interdecadal variability in the North Pacific. Specification skill achieved by a statistical model based on contemporaneous SST forcing with and without an explicit dynamical atmosphere is compared and contrasted. Statistical models relating the SST forcing patterns directly to observed station precipitation are shown to perform consistently better in all seasons than hybrid (dynamical-statistical) models where the SST forcing is first translated to atmospheric circulation via three separate general circulation models and the dynamically computed circulation anomalies are statistically related to observed precipitation. Skill is summarized for all seasons, but in detail for January-February-March, when it is shown that predictable patterns are spatially robust regardless of the approach used. Predictably, much of the skill is due to ENSO. While the U. S. average skill is modest, regional skill levels can be quite high. It is also found that non-ENSO-related skill is significant, especially for the extreme Southwest and that this is due mostly to non-ENSO interannual and decadal variability in the North Pacific SST forcing. Although useful specification skill is achieved by both approaches, hybrid predictability is not pursued further in this effort. Rather, prognostic analysis is carried out with the purely statistical approach to analyze P90 predictability based on antecedent SST forcing. Skill at various lead times is investigated and it is shown that significant regional skill can be achieved at lead times of several months even in the absence of strong ENSO forcing.

Gershunov, A, Barnett T, Cayan D.  1999.  North Pacific interdecadal oscillation seen as factor in ENSO-related North American climate anomalies. EOS Trans. AGU. 80:25-30.   10.1029/99EO00019   Abstract

The North Pacific Oscillation (NPO) may be a significant factor in how El Niño and La Niña affect North American weather. A cold NPO phase indeed may have been partially responsible for the uncommon strength and stability of the El Niño-induced North American climate anomalies of early 1998. On the other hand, the latest La Niña excursion, if NPO persists in its cold phase, would likely produce weaker, less stable, and less predictable climate anomalies.It is well known that the effects of interannual tropical forcing, or El Niño-Southern Oscillation (ENSO) influences, penetrate into middle latitudes to produce particular forms of climate anomalies, such as the relatively well-predicted temperature and precipitation patterns over North America during the great El Niño of 1997–1998. Evidence is now mounting that this ENSO effect accentuates certain types of synoptic scale events, so that the likelihood of extreme events is biased above or below its climatological normal over broad regions. Observations show that these ENSO effects over the United States are also affected by the phases of decadal-scale climate states such as the North Pacific Oscillation (NPO).The NPO influence can be seen in both the seasonal aggregate of various ENSO patterns and the distribution of extreme daily events.

Gershunov, A, Barnett TP.  1998.  Interdecadal modulation of ENSO teleconnections. Bulletin of the American Meteorological Society. 79:2715-2725.   10.1175/1520-0477(1998)079<2715:imoet>2.0.co;2   AbstractWebsite

Seasonal climate anomalies over North America exhibit rather large variability between years characterized by the same ENSO phase. This lack of consistency reduces potential statistically based ENSO-related climate predictability. The authors show that the North Pacific oscillation (NPO) exerts a modulating effect on ENSO teleconnections. Sea lever pressure (SLP) data over the North Pacific, North America, and the North Atlantic and daily rainfall records in the contiguous United States are used to demonstrate that typical ENSO signals tend to be stronger and more stable during preferred phases of the NPO. Typical El Nino patterns (e.g., low pressure over the northeastern Pacific, dry northwest, and wet southwest, etc.) are strong and consistent only during the high phase of the NPO, which is associated with an anomalously cold northwestern Pacific. The generally reversed SLP and precipitation patterns during La Nina winters are consistent only during the low NPO phase. Climatic anomalies tend to be weak and spatially incoherent during low NPO-El Nino and high NPO-La Nina winters. These results suggest that confidence in ENSO-based long-range climate forecasts for North America should reflect interdecadal climatic anomalies in the North Pacific.

Gershunov, A, Roca R.  2004.  Coupling of latent heat flux and the greenhouse effect by large-scale tropical/subtropical dynamics diagnosed in a set of observations and model simulations. Climate Dynamics. 22:205-222.   10.1007/s00382-003-0376-7   AbstractWebsite

Coupled variability of the greenhouse effect (GH) and latent heat flux (LHF) over the tropical - subtropical oceans is described, summarized and compared in observations and a coupled ocean-atmosphere general circulation model (CGCM). Coupled seasonal and interannual modes account for much of the total variability in both GH and LHF. In both observations and model, seasonal coupled variability is locally 180degrees out-of-phase throughout the tropics. Moisture is brought into convergent/convective regions from remote source areas located partly in the opposite, non-convective hemisphere. On interannual time scales, the tropical Pacific GH in the ENSO region of largest interannual variance is 180degrees out of phase with local LHF in observations but in phase in the model. A local source of moisture is thus present in the model on interannual time scales while in observations, moisture is mostly advected from remote source regions. The latent cooling and radiative heating of the surface as manifested in the interplay of LHF and GH is an important determinant of the current climate. Moreover, the hydrodynamic processes involved in the GH-LHF interplay determine in large part the climate response to external perturbations mainly through influencing the water vapor feedback but also through their intimate connection to the hydrological cycle. The diagnostic process proposed here can be performed on other CGCMs. Similarly, it should be repeated using a number of observational latent heat flux datasets to account for the variability in the different satellite retrievals. A realistic CGCM could be used to further study these coupled dynamics in natural and anthropogenically altered climate conditions.

Gershunov, A, Michaelsen J.  1996.  Climatic-scale space-time variability of tropical precipitation. Journal of Geophysical Research-Atmospheres. 101:26297-26307.   10.1029/96jd01382   AbstractWebsite

More than 15 years of monthly microwave sounding unit rainfall data over the tropical oceans are analyzed to illustrate rainfall variability on various timescales and delineate its spatial patterns. The annual and semiannual components of the seasonal cycle are modeled with first and second annual harmonics at every 2.5 degrees x 2.5 degrees grid square. Regions of highest rainfall variability tend to be characterized by a powerful annual cycle. The semiannual cycle is generally a trivial component of the seasonal cycle, except in some regions where either the mean climatological precipitation is low or where the total seasonal cycle is weak. An interesting exception, in this respect, is a band of the southeastern tropical Pacific extending immediately to the south of the eastern equatorial Pacific cold tongue. Regions of highest climatological mean rainfall are characterized by weak seasonality but strong nonseasonal variability. After seasonality is described and removed from the data, nonseasonal variability is considered via principal component analysis in the time domain. The two dominant modes together describe precipitation variability associated with the El Nino-Southern Oscillation: they outline the evolution of warm- and cold-event precipitation anomalies and contrast the intense 1982-1983 warm event with the moderate events of 1986-1987 and 1992-1993. These two modes display oscillations with predominantly quasi-biennial and similar to 5-year periods. Another coherent mode summarizes intraseasonal variability which, although inadequately resolved by the monthly average rainfall data, displays typical signs of the 40- to 50-day oscillation. All coherent modes, despite having much of their energy concentrated around rather different frequencies, show signs of interaction.

Grotjahn, R, Black R, Leung R, Wehner MF, Barlow M, Bosilovich M, Gershunov A, Gutowski WJ, Gyakum JR, Katz RW, Lee YY, Lim YK, Prabhat.  2016.  North American extreme temperature events and related large scale meteorological patterns: a review of statistical methods, dynamics, modeling, and trends. Climate Dynamics. 46:1151-1184.   10.1007/s00382-015-2638-6   AbstractWebsite

The objective of this paper is to review statistical methods, dynamics, modeling efforts, and trends related to temperature extremes, with a focus upon extreme events of short duration that affect parts of North America. These events are associated with large scale meteorological patterns (LSMPs). The statistics, dynamics, and modeling sections of this paper are written to be autonomous and so can be read separately. Methods to define extreme events statistics and to identify and connect LSMPs to extreme temperature events are presented. Recent advances in statistical techniques connect LSMPs to extreme temperatures through appropriately defined covariates that supplement more straightforward analyses. Various LSMPs, ranging from synoptic to planetary scale structures, are associated with extreme temperature events. Current knowledge about the synoptics and the dynamical mechanisms leading to the associated LSMPs is incomplete. Systematic studies of: the physics of LSMP life cycles, comprehensive model assessment of LSMP-extreme temperature event linkages, and LSMP properties are needed. Generally, climate models capture observed properties of heat waves and cold air outbreaks with some fidelity. However they overestimate warm wave frequency and underestimate cold air outbreak frequency, and underestimate the collective influence of low-frequency modes on temperature extremes. Modeling studies have identified the impact of large-scale circulation anomalies and land-atmosphere interactions on changes in extreme temperatures. However, few studies have examined changes in LSMPs to more specifically understand the role of LSMPs on past and future extreme temperature changes. Even though LSMPs are resolvable by global and regional climate models, they are not necessarily well simulated. The paper concludes with unresolved issues and research questions.

Guirguis, K, Gershunov A, Clemesha RES, Shulgina T, Subramanian AC, Ralph FM.  2018.  Circulation drivers of atmospheric rivers at the North American West Coast. Geophysical Research Letters. 45:12576-12584.   10.1029/2018gl079249   AbstractWebsite

Atmospheric rivers (ARs) are mechanisms of strong moisture transport capable of bringing heavy precipitation to the West Coast of North America, which drives water resources and can lead to large-scale flooding. Understanding links between climate variability and landfalling ARs is critical for improving forecasts on timescales needed for water resource management. We examined 69years of landfalling ARs along western North America using reanalysis and a long-term AR catalog to identify circulation drivers of AR landfalls. This analysis reveals that AR activity along the West Coast is largely associated with a handful of influential modes of atmospheric variability. Interaction between these modes creates favorable or unfavorable atmospheric states for landfalling ARs at different locations, effectively steering moisture plumes up and down the coast from Mexico to British Columbia. Seasonal persistence of certain modes helps explain interannual variability of landfalling ARs, including recent California drought years and the wet winter of 2016/2017. Plain Language Summary Understanding links between large-scale climate variability and landfalling ARs is important for improving subseasonal-to-seasonal (S2S) predictability of water resources in the western United States. We have analyzed a seven-decade-long catalog of ARs impacting western North America to quantify synoptic influence on AR activity. Our results identify dominant circulation patterns associated with landfalling ARs and show how seasonal variation in the prevalence of certain circulation features modulates the frequency of AR landfalls at different latitudes in a given year. AR variability played an important role in the recent California drought as well as the wet winter of 2016/2017, and we show how this variability was associated with the relative frequency of favorable versus unfavorable atmospheric states. Our findings also reveal that the bulk of AR landfalls along the West Coast is associated with only a handful of influential circulation features, which has implications for S2S predictability.

Guirguis, K, Gershunov A, Tardy A, Basu R.  2014.  The impact of recent heat waves on human health in California. Journal of Applied Meteorology and Climatology. 53:3-19.   10.1175/jamc-d-13-0130.1   AbstractWebsite

This study examines the health impacts of recent heat waves statewide and for six subregions of California: the north and south coasts, the Central Valley, the Mojave Desert, southern deserts, and northern forests. By using canonical correlation analysis applied to daily maximum temperatures and morbidity data in the form of unscheduled hospitalizations from 1999 to 2009, 19 heat waves spanning 3-15 days in duration that had a significant impact on health were identified. On average, hospital admissions were found to increase by 7% on the peak heat-wave day, with a significant impact seen for several disease categories, including cardiovascular disease, respiratory disease, dehydration, acute renal failure, heat illness, and mental health. Statewide, there were 11 000 excess hospitalizations that were due to extreme heat over the period, yet the majority of impactful events were not accompanied by a heat advisory or warning from the National Weather Service. On a regional basis, the strongest health impacts are seen in the Central Valley and the north and south coasts. The north coast contributes disproportionately to the statewide health impact during heat waves, with a 10.5% increase in daily morbidity at heat-wave peak as compared with 8.1% for the Central Valley and 5.6% for the south coast. The temperature threshold at which an impact is seen varies by subregion and timing within the season. These results suggest that heat-warning criteria should consider local percentile thresholds to account for acclimation to local climatological conditions as well as the seasonal timing of a forecast heat wave.

Guirguis, K, Gershunov A, Cayan DR.  2015.  Interannual variability in associations between seasonal climate, weather, and extremes: wintertime temperature over the Southwestern United States. Environmental Research Letters. 10   10.1088/1748-9326/10/12/124023   AbstractWebsite

Temperature variability in the Southwest US is investigated using skew-normal probability distribution functions (SN PDFs) fitted to observed wintertime daily maximum temperature records. These PDFs vary significantly between years, with important geographical differences in the relationship between the central tendency and tails, revealing differing linkages between weather and climate. The warmest and coldest extremes do not necessarily follow the distribution center. In some regions one tail of the distribution shows more variability than does the other. For example, in California the cold tail is more variable while the warm tail remains relatively stable, so warm years are associated with fewer cold extremes but not necessarily more warm extremes. The opposite relationship is seen in the Great Plains. Changes in temperature PDFs are conditioned by different phases of El Nino-La Nina (ENSO) and the Pacific decadal oscillation (PDO). In the Southern Great Plains, La Nina and/or negative PDO are associated with generally warmer conditions. However, in terms of extremes, while the warm tails become thicker and longer, the cool tails are not impacted-extremely warm days become more frequent but extremely cool days are not less frequent. In contrast, in coastal California, La Nina or negative PDO bring generally cooler conditions with more/stronger cold extremes but the warm extreme probability is not significantly affected. These results could have implications for global warming. If a rigid shift of the whole range occurs, then warm years are not necessarily a good analogue for a warmer climate. If global warming instead brings regional changes more aligned with a preferred state of dominant climate variability modes, then we may see asymmetric changes in the tails of local temperature PDFs.

Guirguis, K, Gershunov A, Shulgina T, Clemesha RES, Ralph FM.  2019.  Atmospheric rivers impacting Northern California and their modulation by a variable climate. Climate Dynamics. 52:6569-6583.   10.1007/s00382-018-4532-5   AbstractWebsite

Understanding the role of climate variability in modulating the behavior of land-falling atmospheric rivers (ARs) is important for seasonal and subseasonal predictability for water resource management and flood control. We examine daily activity of ARs targeting the Northern California coast over six decades using observations of synoptic-scale circulation, high-resolution precipitation, and a long-term AR detection catalog to quantify distinct types of land-falling ARs categorized by their circulation features. We demonstrate how dramatically different atmospheric states evolve into landfalling ARs along distinct pathways that are modulated by interannual (El Nino/Southern Oscillation (ENSO)and the Pacific Decadal Oscillation) and subseasonal (Arctic Oscillation, Pacific North American Pattern, Western Pacific Oscillation, and the Eastern Pacific Oscillation) modes of large-scale climate variability. Different configurations of climate variability modes are shown to favor ARs having different characteristics in terms of synoptic evolution, integrated vapor transport and landfall orientation resulting in different patterns of precipitation over the landscape. In particular, our results show that while ENSO plays an important role in modulating the synoptic evolution of ARs and their orientation at landfall, subseasonal regional climate modes, which also influence landfall orientation as well as the position of the storm track, appear to be more influential than ENSO in modulating precipitation variability in California. This could have implications for seasonal to subseasonal (S2S) forecasting. Finally, we examine AR activity over the most recent and highly anomalous winter 2016-2017 and show how the unprecedented wet conditions in Northern California were at least partly due to the persistence of ARs characterized by a southward storm track and southerly orientation, which represent the type of ARs associated with heavy rainfall in California, and which are associated with the negative phase of subseasonal regional teleconnection patterns.

Guirguis, K, Gershunov A, Schwartz R, Bennett S.  2011.  Recent warm and cold daily winter temperature extremes in the Northern Hemisphere. Geophysical Research Letters. 38   10.1029/2011gl048762   AbstractWebsite

The winters of 2009-2010 and 2010-2011 brought frigid temperatures to parts of Europe, Russia, and the U. S. We analyzed regional and Northern Hemispheric (NH) daily temperature extremes for these two consecutive winters in the historical context of the past 63 years. While some parts clearly experienced very cold temperatures, the NH was not anomalously cold. Extreme warm events were much more prevalent in both magnitude and spatial extent. Importantly, the persistent negative state of the North Atlantic Oscillation (NAO) explained the bulk of the observed cold anomalies, however the warm extremes were anomalous even accounting for the NAO and also considering the states of the Pacific Decadal Oscillation (PDO) and El Nino Southern Oscillation (ENSO). These winters' widespread and intense warm extremes together with a continuing hemispheric decline in cold snap activity was a pattern fully consistent with a continuation of the warming trend observed in recent decades. Citation: Guirguis, K., A. Gershunov, R. Schwartz, and S. Bennett (2011), Recent warm and cold daily winter temperature extremes in the Northern Hemisphere, Geophys. Res. Lett., 38, L17701, doi:10.1029/2011GL048762.

Guirguis, K, Gershunov A, Cayan DR, Pierce DW.  2018.  Heat wave probability in the changing climate of the Southwest US. Climate Dynamics. 50:3853-3864.   10.1007/s00382-017-3850-3   AbstractWebsite

Analyses of observed non-Gaussian daily minimum and maximum temperature probability distribution functions (PDFs) in the Southwest US highlight the importance of variance and warm tail length in determining future heat wave probability. Even if no PDF shape change occurs with climate change, locations with shorter warm tails and/or smaller variance will see a greater increase in heat wave probability, defined as exceedances above the historical 95th percentile threshold, than will long tailed/larger variance distributions. Projections from ten downscaled CMIP5 models show important geospatial differences in the amount of warming expected for a location. However, changes in heat wave probability do not directly follow changes in background warming. Projected changes in heat wave probability are largely explained by a rigid shift of the daily temperature distribution. In some locations where there is more warming, future heat wave probability is buffered somewhat by longer warm tails. In other parts of the Southwest where there is less warming, heat wave probability is relatively enhanced because of shorter tailed PDFs. Effects of PDF shape changes are generally small by comparison to those from a rigid shift, and fall within the range of uncertainty among models in the amount of warming expected by the end of the century.

Guzman-Morales, J, Gershunov A, Theiss J, Li HQ, Cayan D.  2016.  Santa Ana Winds of Southern California: Their climatology, extremes, and behavior spanning six and a half decades. Geophysical Research Letters. 43:2827-2834.   10.1002/2016gl067887   AbstractWebsite

Santa Ana Winds (SAWs) are an integral feature of the regional climate of Southern California/Northern Baja California region, but their climate-scale behavior is poorly understood. In the present work, we identify SAWs in mesoscale dynamical downscaling of a global reanalysis from 1948 to 2012. Model winds are validated with anemometer observations. SAWs exhibit an organized pattern with strongest easterly winds on westward facing downwind slopes and muted magnitudes at sea and over desert lowlands. We construct hourly local and regional SAW indices and analyze elements of their behavior on daily, annual, and multidecadal timescales. SAWs occurrences peak in winter, but some of the strongest winds have occurred in fall. Finally, we observe that SAW intensity is influenced by prominent large-scale low-frequency modes of climate variability rooted in the tropical and north Pacific ocean-atmosphere system.

Guzman-Morales, J, Gershunov A.  2019.  Climate change suppresses Santa Ana winds of Southern California and sharpens their seasonality. Geophysical Research Letters. 46:2772-2780.   10.1029/2018gl080261   AbstractWebsite

We downscale Santa Ana winds (SAWs) from eight global climate models (GCMs) and validate key aspects of their climatology over the historical period. We then assess SAW evolution and behavior through the 21st century, paying special attention to changes in their extreme occurrences. All GCMs project decreases in SAW activity, starting in the early 21st century, which are commensurate with decreases in the southwestward pressure gradient force that drives these winds. The trend is most pronounced in the early and late SAW season: fall and spring. It is mainly determined by changes in the frequency of SAW events, less so by changes in their intensity. The peak of the SAW season (November-December-January) is least affected by anthropogenic climate change in GCM projections. Plain Language Summary Dry and gusty Santa Ana winds (SAWs) drive the most catastrophic wildfires in Southern California. Their sensitivity to the changing climate has been a matter of uncertainty and debate. We have assessed the response of SAW activity to global warming and describe these results in detail here. The overall decrease in SAW activity robustly projected by downscaled global climate models is strongest in the early and late seasons-fall and spring. SAWs are expected to decrease least at the peak of their season approximately December. Importantly, decreased SAW activity in the future climate is driven mainly by decreased frequency rather than the peak intensity of these winds. These results, together with what we know from recent literature about how precipitation is projected to change in this region, suggest a later wildfire season in the future.