Export 3 results:
Sort by: Author [ Title  (Asc)] Type Year
A B [C] D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
Barton, AD, Casey KS.  2005.  Climatological context for large-scale coral bleaching. Coral Reefs. 24:536-554.   10.1007/s00338-005-0017-1   Abstract

Large-scale coral bleaching was first observed in 1979 and has occurred throughout virtually all of the tropics since that time. Severe bleaching may result in the loss of live coral and in a decline of the integrity of the impacted coral reef ecosystem. Despite the extensive scientific research and increased public awareness of coral bleaching, uncertainties remain about the past and future of large-scale coral bleaching. In order to reduce these uncertainties and place large-scale coral bleaching in the longer-term climatological context, specific criteria and methods for using historical sea surface temperature (SST) data to examine coral bleaching-related thermal conditions are proposed by analyzing three, 132 year SST reconstructions: ERSST, HadISST1, and GISST2.3b. These methodologies are applied to case studies at Discovery Bay, Jamaica (77.27°W, 18.45°N), Sombrero Reef, Florida, USA (81.11°W, 24.63°N), Academy Bay, Galápagos, Ecuador (90.31°W, 0.74°S), Pearl and Hermes Reef, Northwest Hawaiian Islands, USA (175.83°W, 27.83°N), Midway Island, Northwest Hawaiian Islands, USA (177.37°W, 28.25°N), Davies Reef, Australia (147.68°E, 18.83°S), and North Male Atoll, Maldives (73.35°E, 4.70°N). The results of this study show that (1) The historical SST data provide a useful long-term record of thermal conditions in reef ecosystems, giving important insight into the thermal history of coral reefs and (2) While coral bleaching and anomalously warm SSTs have occurred over much of the world in recent decades, case studies in the Caribbean, Northwest Hawaiian Islands, and parts of other regions such as the Great Barrier Reef exhibited SST conditions and cumulative thermal stress prior to 1979 that were comparable to those conditions observed during the strong, frequent coral bleaching events since 1979. This climatological context and knowledge of past environmental conditions in reef ecosystems may foster a better understanding of how coral reefs will respond in future, ocean warming scenarios.

Barton, AD, Greene CH, Monger BC, Pershing AJ.  2003.  The Continuous Plankton Recorder survey and the North Atlantic Oscillation: Interannual- to Multidecadal-scale patterns of phytoplankton variability in the North Atlantic Ocean. Progress in Oceanography. 58:337-358.   10.1016/j.pocean.2003.08.012   Abstract

At interannual to multidecadal time scales, much of the oceanographic and climatic variability in the North Atlantic Ocean can be associated with the North Atlantic Oscillation (NAO). While evidence suggests that there is a relationship between the NAO and zooplankton dynamics in the North Atlantic Ocean, the phytoplankton response to NAO-induced changes in the environment is less clear. Time series of monthly mean phytoplankton colour values, as compiled by the Continuous Plankton Recorder (CPR) survey, are analysed to infer relationships between the NAO and phytoplankton dynamics throughout the North Atlantic Ocean. While a few areas display highly significant (p < 0.05) trends in the CPR colour time series during the period 1948–2000, nominally significant (p < 0.20) positive trends are widespread across the basin, particularly on the continental shelves and in a transition zone stretching across the Central North Atlantic. When long-term trends are removed from both the NAO index and CPR colour time series, the correlation between them ceases to be significant. Several hypotheses are proposed to explain the observed variability in the CPR colour and its relationship with climate in the North Atlantic.

Mariani, P, Andersen KH, Visser AW, Barton AD, Kiørboe T.  2013.  Control of plankton seasonal succession by adaptive grazing. Limnology and Oceanography. 58:173-184.   10.4319/lo.2013.58.1.0173   Abstract

The ecological succession of phytoplankton communities in temperate seas is characterized by the dominance of nonmotile diatoms during spring and motile flagellates during summer, a pattern often linked to the seasonal variation in the physical environment and nutrient availability. We focus on the effects of adaptive zooplankton grazing behavior on the seasonal succession of temperate plankton communities in an idealized community model consisting of a zooplankton grazer and two phytoplankton species, one motile and the other nonmotile. The grazer can switch between ambush feeding on motile cells or feeding-current feeding on nonmotile cells. The feeding-current behavior imposes an additional mortality risk on the grazer, whereas ambush feeding benefits from small-scale fluid turbulence. Grazer-phytoplankton feeding interactions are forced by light and turbulence and the grazer adopts the feeding behavior that optimizes its fitness. The adaptive grazing model predicts essential features of the seasonal plankton succession reported from temperate seas, including the vertical distribution and seasonal variation in the relative abundance of motile and nonmotile phytoplankton and the seasonal variation in grazer abundance. Adaptive grazing behavior, in addition to nutrient and mixing regimes, can promote characteristic changes in the seasonal structure of phytoplankton community observed in nature.