Publications

Export 2 results:
Sort by: Author Title Type [ Year  (Desc)]
2018
McGinty, N, Barton AD, Record NR, Finkel ZV, Irwin AJ.  2018.  Traits structure copepod niches in the North Atlantic and Southern Ocean. Marine Ecology Progress Series. 601:109-126.   10.3354/meps12660   AbstractWebsite

Realised niches describe the environmental and biotic conditions that a species occupies. Among marine zooplankton, species traits, including body size, dietary mode (herbivore, omnivore, or carnivore), and diapause strategy are expected to influence the realised niche of a species. To date, realised niches are known for only a small number of copepod species. Here we quantify the realised niches of 88 copepod species measured by the Continuous Plankton Recorder (CPR) in the North Atlantic and Southern Ocean using Maximum Entropy (MaxEnt) modelling. We estimate the univariate mean niche, niche breadth of copepods for several important environmental variables, and assess the relative effects of several key zooplankton traits on the mean niche. Sea surface temperature (SST) contributed the most information to the description of niches on average across all species, with the rank importance of the remaining variables varying between regions. In the North Atlantic SST, depth, salinity and chlorophyll niches separated omnivores and herbivores from carnivores while in the Southern Ocean niche differences across dietary modes were found for chlorophyll and wind stress only. Diapausing copepods were found to occur in colder temperatures compared with non-diapausing taxa, likely because of their capacity for accumulating lipids. A strong negative body size-niche breadth relationship was found only for diapausing copepods, suggesting that larger multi-year generation species are more reliant on a specific temperature range to successfully reach diapause. Our analysis demonstrates strong connections between copepod traits and their realised niches in natural populations.

2016
Barton, AD, Irwin AJ, Finkel ZV, Stock CA.  2016.  Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities. Proceedings of the National Academy of Sciences of the United States of America. 113:2964-2969.   10.1073/pnas.1519080113   AbstractWebsite

Anthropogenic climate change has shifted the biogeography and phenology of many terrestrial and marine species. Marine phytoplankton communities appear sensitive to climate change, yet understanding of how individual species may respond to anthropogenic climate change remains limited. Here, using historical environmental and phytoplankton observations, we characterize the realized ecological niches for 87 North Atlantic diatom and dinoflagellate taxa and project changes in species biogeography between mean historical (1951-2000) and future (2051-2100) ocean conditions. We find that the central positions of the core range of 74% of taxa shift poleward at a median rate of 12.9 kmper decade (km.dec(-1)), and 90% of taxa shift eastward at a median rate of 42.7 km.dec(-1). The poleward shift is faster than previously reported for marine taxa, and the predominance of longitudinal shifts is driven by dynamic changes in multiple environmental drivers, rather than a strictly poleward, temperature-driven redistribution of ocean habitats. A century of climate change significantly shuffles community composition by a basin-wide median value of 16%, compared with seasonal variations of 46%. The North Atlantic phytoplankton community appears poised for marked shift and shuffle, which may have broad effects on food webs and biogeochemical cycles.