Export 6 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R [S] T U V W X Y Z   [Show ALL]
Andersson, AJ, Krug LA, Bates NR, Doney SC.  2013.  Sea-air CO2 flux in the North Atlantic subtropical gyre: Role and influence of Sub-Tropical Mode Water formation. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 91:57-70.   10.1016/j.dsr2.2013.02.022   AbstractWebsite

The uptake of atmospheric carbon dioxide (CO2) into the mid-latitudes of the North Atlantic Ocean through the production of wintertime Sub-Tropical Mode Water (STMW) also known as Eighteen Degree Water (EDW) is poorly quantified and constrained. Nonetheless, it has been proposed that the EDW could serve as an important short-term sink of anthropogenic CO2. The objective of the present investigation was to determine sea-air CO2 gas exchange rates and seawater CO2 dynamics during wintertime formation of EDW in the North Atlantic Ocean. During 2006 and 2007, several research cruises were undertaken as part of the CLIMODE project across the northwest Atlantic Ocean with the intent to study the pre-conditioning, formation, and the evolution of EDW. Sea-air CO2 exchange rates were calculated based on measurements of atmospheric pCO(2), surface seawater pCO(2) and wind speed with positive values denoting a net flux from the surface ocean to the atmosphere. Average sea-air CO2 flux calculated along cruise tracks in the formation region equaled -18 +/- 6 mmol CO2 m(-2) d(-1) and -14 +/- 9 mmol CO2 m(-2) d(-1) in January of 2006 and March of 2007, respectively. Average sea-air CO2 flux in newly formed outcropping EDW in February and March of 2007 equaled -28 +/- 10 mmol CO2 m(-2) d(-1). These estimates exceeded previous flux estimates in this region by 40-185%. The magnitude of CO2 flux was mainly controlled by the observed variability in wind speed and Delta pCO(2) with smaller changes owing to variability in sea surface temperature. Small but statistically significant difference (4.1 +/- 2.6 mu mol kg(-1)) in dissolved inorganic carbon (DIC) was observed in two occurrences of newly formed EDW in February and March of 2007. This difference was explained either by differences in the relative contribution from different water masses involved in the initial formation process of EDW or temporal changes owing to sea-air CO2 exchange (similar to 25%) and vertical and/or lateral mixing (similar to 75%) with water masses high in DIC from the cold side of the Gulf Stream and/or from below the permanent thermocline. Based on the present estimate of sea-air CO2 flux in newly formed EDW and a formation rate of 9.3 Sv y (Sverdrup year = 10(6) m(3) s(-1) flow sustained for 1 year), CO2 uptake by newly formed EDW may constitute 3-6% of the total North Atlantic CO2 sink. However, advection of surface waters that carry an elevated burden of anthropogenic CO2 that are transported to the formation region and transformed to mode water may contribute additional CO2 to the total net uptake and sequestration of anthropogenic CO2 to the ocean interior. (c) 2013 Elsevier Ltd. All rights reserved.

Bresnahan, PJ, Wirth T, Martz TR, Andersson AJ, Cyronak T, D’Angelo S, Pennise J, Melville KW, Lenain L, Statom N.  2016.  A sensor package for mapping pH and oxygen from mobile platforms. Methods in Oceanography. 17:1-13.   10.1016/j.mio.2016.04.004   Abstract

A novel chemical sensor package named “WavepHOx” was developed in order to facilitate measurement of surface ocean pH, dissolved oxygen, and temperature from mobile platforms. The system comprises a Honeywell Durafet pH sensor, Aanderaa optode oxygen sensor, and chloride ion selective electrode, packaged into a hydrodynamic, lightweight housing. The WavepHOx has been deployed on a stand-up paddleboard and a Liquid Robotics Wave Glider in multiple near-shore settings in the Southern California Bight. Integration of the WavepHOx into these mobile platforms has enabled high spatiotemporal resolution pH and dissolved oxygen data collection. It is a particularly valuable tool for mapping shallow, fragile, or densely vegetated ecosystems which cannot be easily accessed by other platforms. Results from three surveys in San Diego, California, are reported. We show pH and dissolved oxygen variability >0.3 and >50% saturation, respectively, over tens to hundreds of meters to highlight the degree of natural spatial variability in these vegetated ecosystems. When deployed during an extensive discrete sampling program, the WavepHOx pH had a root mean squared error of 0.028 relative to pH calculated from fifty six measurements of total alkalinity and dissolved inorganic carbon, confirming its capacity for accurate, high spatiotemporal resolution data collection.

Andersson, AJ, Mackenzie FT.  2004.  Shallow-water oceans: a source or sink of atmospheric CO2? Frontiers in Ecology and the Environment. 2:348-353.   10.1890/1540-9295(2004)002[0348:soasos];2   AbstractWebsite

The shallow-water ocean environment is of great importance in the context of global change and is heavily impacted by human activity. This study evaluates the effects of human activity on the CO2 exchange between the atmosphere and the surface water of shallow-water oceans. The evaluation is based on changes in net ecosystem metabolism, net ecosystem calcification, and atmospheric CO2 concentrations, as seen in a process-driven biogeochemical box model. Numerical simulations show that this air-sea interface has probably served as a net source of CO2 to the atmosphere for much of the past 300 years, but has recently switched, or will switch soon, to a net sink of CO2, because of rising atmospheric CO2 and increasing inorganic nutrient load.

Yeakel, KL, Andersson AJ, Bates NR, Noyes TJ, Collins A, Garley R.  2015.  Shifts in coral reef biogeochemistry and resulting acidification linked to offshore productivity. Proceedings of the National Academy of Sciences of the United States of America. 112:14512-14517.   10.1073/pnas.1507021112   AbstractWebsite

Oceanic uptake of anthropogenic carbon dioxide (CO2) has acidified open-ocean surface waters by 0.1 pH units since preindustrial times. Despite unequivocal evidence of ocean acidification (OA) via open-ocean measurements for the past several decades, it has yet to be documented in near-shore and coral reef environments. A lack of long-term measurements from these environments restricts our understanding of the natural variability and controls of seawater CO2-carbonate chemistry and biogeochemistry, which is essential to make accurate predictions on the effects of future OA on coral reefs. Here, in a 5-y study of the Bermuda coral reef, we show evidence that variations in reef biogeochemical processes drive interannual changes in seawater pH and Omega(aragonite) that are partly controlled by offshore processes. Rapid acidification events driven by shifts toward increasing net calcification and net heterotrophy were observed during the summers of 2010 and 2011, with the frequency and extent of such events corresponding to increased offshore productivity. These events also coincided with a negative winter North Atlantic Oscillation (NAO) index, which historically has been associated with extensive offshore mixing and greater primary productivity at the Bermuda Atlantic Time-series Study (BATS) site. Our results reveal that coral reefs undergo natural interannual events of rapid acidification due to shifts in reef biogeochemical processes that may be linked to offshore productivity and ultimately controlled by larger-scale climatic and oceanographic processes.

Cyronak, T, Andersson AJ, D'Angelo S, Bresnahan P, Davidson C, Griffin A, Kindeberg T, Pennise J, Takeshita Y, White M.  2018.  Short-term spatial and temporal carbonate chemistry variability in two contrasting seagrass meadows: Implications for pH buffering capacities. Estuaries and Coasts. 41:1282-1296.   10.1007/s12237-017-0356-5   AbstractWebsite

It has been hypothesized that highly productive coastal ecosystems, such as seagrass meadows, could lead to the establishment of ocean acidification (OA) refugia, or areas of elevated pH and aragonite saturation state (Omega(a)) compared to source seawater. However, seagrass ecosystems experience extreme variability in carbonate chemistry across short temporal and small spatial scales, which could impact the pH buffering capacity of these potential refugia. Herein, short-term (hourly to diel) and small-scale (across 0.01-0.14 km(2)) spatiotemporal carbonate chemistry variability was assessed within two seagrass meadows in order to determine their short-term potential to elevate seawater pH relative to source seawater. Two locations at similar latitudes were chosen in order to compare systems dominated by coarse calcium carbonate (Bailey's Bay, Bermuda) and muddy silicate (Mission Bay, CA, USA) sediments. In both systems, spatial variability of pH across the seagrass meadow at any given time was often greater than diel variability (e.g., the average range over 24 h) at any one site, with greater spatial variability occurring at low tide in Mission Bay. Mission Bay (spatial Delta pH = 0.08 +/- 0.08; diel Delta pH = 0.12 +/- 0.01; mean +/- SD) had a greater average range in both temporal and spatial seawater chemistry than Bailey's Bay (spatial Delta pH = 0.02 +/- 0.01; diel Delta pH = 0.03 +/- 0.00; mean +/- SD). These differences were most likely due to a combination of slower currents, a larger tidal range, and more favorable weather conditions for photosynthesis (e.g., sunny with no rain) in Mission Bay. In both systems, there was a substantial amount of time (usually at night) when seawater pH within the seagrass beds was lower relative to the source seawater. Future studies aimed at assessing the potential of seagrass ecosystems to act as OA refugia for marine organisms need to account for the small-scale, high-frequency carbonate chemistry variability in both space and time, as this variability will impact where and when OA will be buffered or intensified.

Andersson, AJ, Mackenzie FT, Ver LM.  2003.  Solution of shallow-water carbonates: An insignificant buffer against rising atmospheric CO2. Geology. 31:513-516.   10.1130/0091-7613(2003)031<0513:soscai>;2   AbstractWebsite

Model predictions suggest that the saturation state of surface ocean waters with respect to carbonate minerals will decline during the twenty-first century owing to increased invasion of atmospheric CO2. As a result, calcareous organisms may have difficulty calcifying, leading to production of weaker skeletons and greater vulnerability to erosion. Alternatively, it has been suggested that there will be no significant impact on coral reef ecosystems because any changes in saturation state and pH will be restored by dissolution of metastable carbonate minerals. To resolve this controversy, we employ a physical-biogeochemical box model representative of the shallow-water ocean environment. Numerical simulations demonstrate that the carbonate saturation state of surface waters could significantly decrease and hamper the biogenic production of CaCO3 during the twenty-first century. Similarly, the average saturation state of marine pore waters could decline significantly, inducing dissolution of metastable carbonate phases within the pore-water-sediment system. Such dissolution could buffer the carbon chemistry of the pore waters, but overlying surface waters of reefs and other shallow-water carbonate environments will not accumulate sufficient alkalinity to buffer pH or carbonate saturation state changes owing to invasion of atmospheric CO2.