Export 2 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q [R] S T U V W X Y Z   [Show ALL]
Sato, KN, Andersson AJ, Day JMD, Taylor JRA, Frank MB, Jung JY, McKittrick J, Levin LA.  2018.  Response of sea urchin fitness traits to environmental gradients across the Southern California oxygen minimum zone. Frontiers in Marine Science. 5   10.3389/fmars.2018.00258   AbstractWebsite

Marine calcifiers are considered to be among the most vulnerable taxa to climate-forced environmental changes occurring on continental margins with effects hypothesized to occur on microstructural, biomechanical, and geochemical properties of carbonate structures. Natural gradients in temperature, salinity, oxygen, and pH on an upwelling margin combined with the broad depth distribution (100-1,100 m) of the pink fragile sea urchin, Strongylocentrotus (formerly Allocentrotus) fragilis, along the southern California shelf and slope provide an ideal system to evaluate potential effects of multiple climate variables on carbonate structures in situ. We measured, for the first time, trait variability across four distinct depth zones using natural gradients as analogues for species-specific implications of oxygen minimum zone (OMZ) expansion, deoxygenation and ocean acidification. Although S. fragilis may likely be tolerant of future oxygen and pH decreases predicted during the twenty-first century, we determine from adults collected across multiple depth zones that urchin size and potential reproductive fitness (gonad index) are drastically reduced in the OMZ core (450-900 m) compared to adjacent zones. Increases in porosity and mean pore size coupled with decreases in mechanical nanohardness and stiffness of the calcitic endoskeleton in individuals collected from lower pH(Total) (7.57-7.59) and lower dissolved oxygen (13-42 mu mol kg(-1)) environments suggest that S. fragilis may be potentially vulnerable to crushing predators if these conditions become more widespread in the future. In addition, elemental composition indicates that S. fragilis has a skeleton composed of the low Mg-calcite mineral phase of calcium carbonate (mean Mg/Ca = 0.02 mol mol(-1)), with Mg/Ca values measured in the lower end of values reported for sea urchins known to date. Together these findings suggest that ongoing declines in oxygen and pH will likely affect the ecology and fitness of a dominant echinoid on the California margin.

Andersson, AJ, Mackenzie FT.  2012.  Revisiting four scientific debates in ocean acidification research. Biogeosciences. 9:893-905.   10.5194/bg-9-893-2012   AbstractWebsite

In recent years, ocean acidification has gained continuously increasing attention from scientists and a number of stakeholders and has raised serious concerns about its effects on marine organisms and ecosystems. With the increase in interest, funding resources, and the number of scientific investigations focusing on this environmental problem, increasing amounts of data and results have been produced, and a progressively growing and more rigorous understanding of this problem has begun to develop. Nevertheless, there are still a number of scientific debates, and in some cases misconceptions, that keep reoccurring at a number of forums in various contexts. In this article, we revisit four of these topics that we think require further thoughtful consideration including: (1) surface seawater CO2 chemistry in shallow water coastal areas, (2) experimental manipulation of marine systems using CO2 gas or by acid addition, (3) net versus gross calcification and dissolution, and (4) CaCO3 mineral dissolution and seawater buffering. As a summation of these topics, we emphasize that: (1) many coastal environments experience seawater pCO(2) that is significantly higher than expected from equilibrium with the atmosphere and is strongly linked to biological processes; (2) addition of acid, base or CO2 gas to seawater can all be useful techniques to manipulate seawater chemistry in ocean acidification experiments; (3) estimates of calcification or CaCO3 dissolution based on present techniques are measuring the net of gross calcification and dissolution; and (4) dissolution of metastable carbonate mineral phases will not produce sufficient alkalinity to buffer the pH and carbonate saturation state of shallow water environments on timescales of decades to hundreds of years to the extent that any potential negative effects on marine calcifiers will be avoided.