Publications

Export 3 results:
Sort by: Author [ Title  (Desc)] Type Year
A B C D E F G H I J K L M N [O] P Q R S T U V W X Y Z   [Show ALL]
O
Andersson, AJ.  2014.  The oceanic CaCO3 cycle. Treatise on Geochemistry. Vol. 8( Holland HD, Turekian KK, Eds.)., Oxford: Elsevier   10.1016/B978-0-08-095975-7.00619-7  
Andersson, AJ, Gledhill D.  2013.  Ocean Acidification and Coral Reefs: Effects on Breakdown, Dissolution, and Net Ecosystem Calcification. Annual Review of Marine Science. 5:321-348.   doi:10.1146/annurev-marine-121211-172241   AbstractWebsite

The persistence of carbonate structures on coral reefs is essential in providing habitats for a large number of species and maintaining the extraordinary biodiversity associated with these ecosystems. As a consequence of ocean acidification (OA), the ability of marine calcifiers to produce calcium carbonate (CaCO3) and their rate of CaCO3 production could decrease while rates of bioerosion and CaCO3 dissolution could increase, resulting in a transition from a condition of net accretion to one of net erosion. This would have negative consequences for the role and function of coral reefs and the eco-services they provide to dependent human communities. In this article, we review estimates of bioerosion, CaCO3 dissolution, and net ecosystem calcification (NEC) and how these processes will change in response to OA. Furthermore, we critically evaluate the observed relationships between NEC and seawater aragonite saturation state (Ωa). Finally, we propose that standardized NEC rates combined with observed changes in the ratios of dissolved inorganic carbon to total alkalinity owing to net reef metabolism may provide a biogeochemical tool to monitor the effects of OA in coral reef environments.

Jokiel, PL, Rodgers KS, Kuffner IB, Andersson AJ, Cox EF, Mackenzie FT.  2008.  Ocean acidification and calcifying reef organisms: a mesocosm investigation. Coral Reefs. 27:473-483.   10.1007/s00338-008-0380-9   AbstractWebsite

A long-term (10 months) controlled experiment was conducted to test the impact of increased partial pressure of carbon dioxide (pCO(2)) on common calcifying coral reef organisms. The experiment was conducted in replicate continuous flow coral reef mesocosms flushed with unfiltered sea water from Kaneohe Bay, Oahu, Hawaii. Mesocosms were located in full sunlight and experienced diurnal and seasonal fluctuations in temperature and sea water chemistry characteristic of the adjacent reef flat. Treatment mesocosms were manipulated to simulate an increase in pCO(2) to levels expected in this century [midday pCO(2) levels exceeding control mesocosms by 365 +/- 130 mu atm (mean +/- sd)]. Acidification had a profound impact on the development and growth of crustose coralline algae (CCA) populations. During the experiment, CCA developed 25% cover in the control mesocosms and only 4% in the acidified mesocosms, representing an 86% relative reduction. Free-living associations of CCA known as rhodoliths living in the control mesocosms grew at a rate of 0.6 g buoyant weight year(-1) while those in the acidified experimental treatment decreased in weight at a rate of 0.9 g buoyant weight year(-1), representing a 250% difference. CCA play an important role in the growth and stabilization of carbonate reefs, so future changes of this magnitude could greatly impact coral reefs throughout the world. Coral calcification decreased between 15% and 20% under acidified conditions. Linear extension decreased by 14% under acidified conditions in one experiment. Larvae of the coral Pocillopora damicornis were able to recruit under the acidified conditions. In addition, there was no significant difference in production of gametes by the coral Montipora capitata after 6 months of exposure to the treatments.