Publications

Export 3 results:
Sort by: Author Title [ Type  (Desc)] Year
Journal Article
Morse, JW, Andersson AJ, Mackenzie FT.  2006.  Initial responses of carbonate-rich shelf sediments to rising atmospheric pCO(2) and "ocean acidification": Role of high Mg-calcites. Geochimica Et Cosmochimica Acta. 70:5814-5830.   10.1016/j.gca.2006.08.017   AbstractWebsite

Carbonate-rich sediments at shoal to shelf depths (< 200 m) represent a major CaCO(3) reservoir that can rapidly react to the decreasing saturation state of seawater with respect to carbonate minerals, produced by the increasing partial pressure of atmospheric carbon dioxide (pCO(2)) and "acidification" of ocean waters. Aragonite is usually the most abundant carbonate mineral in these sediments. However, the second most abundant (typically similar to 24 wt%) carbonate mineral is high Mg-calcite (Mg-calcite) whose solubility can exceed that of aragonite making it the "first responder" to the decreasing saturation state of seawater. For the naturally occurring biogenic Mg-calcites, dissolution experiments have been used to predict their "stoichiometric solubilities" as a function of mol% MgCO(3). The only valid relationship that one can provisionally use for the metastable stabilities for Mg-calcite based on composition is that for the synthetically produced phases where metastable equilibrium has been achieved from both under- and over-saturation. Biogenic Mg-calcites exhibit a large offset in solubility from that of abiotic Mg-calcite and can also exhibit a wide range of solubilities for biogenic Mg-calcites of similar Mg content. This indicates that factors other than the Mg content can influence the solubility of these mineral phases. Thus, it is necessary to turn to observations of natural sediments where changes in the saturation state of surrounding waters occur in order to determine their likely responses to the changing saturation state in upper oceanic waters brought on by increasing pCO(2). In the present study, we investigate the responses of Mg-calcites to rising pCO(2) and "ocean acidification" by means of a simple numerical model based on the experimental range of biogenic Mg-calcite solubilities as a function of Mg content in order to bracket the behavior of the most abundant Mg-calcite phases in the natural environment. In addition, observational data from Bermuda and the Great Bahama Bank are also presented in order to project future responses of these minerals. The numerical simulations suggest that Mg-calcite minerals will respond to rising pCO(2) by sequential dissolution according to mineral stability, progressively leading to removal of the more soluble phases until the least soluble phases remain. These results are confirmed by laboratory experiments and observations from Bermuda. As a consequence of continuous increases in atmospheric CO, from burning of fossil fuels, the average composition of contemporary carbonate sediments could change, i.e., the average Mg content in the sediments may slowly decrease. Furthermore, evidence from the Great Bahama Bank indicates that the amount of abiotic carbonate production is likely to decline as pCO(2) continues to rise. (c) 2006 Elsevier Inc. All rights reserved.

Edmunds, PJ, Comeau S, Lantz C, Andersson A, Briggs C, Cohen A, Gattuso JP, Grady JM, Gross K, Johnson M, Muller EB, Ries JB, Tambutte S, Tambutte E, Venn A, Carpenter RC.  2016.  Integrating the effects of ocean acidification across functional scales on tropical coral reefs. Bioscience. 66:350-362.   10.1093/biosci/biw023   AbstractWebsite

There are concerns about the future of coral reefs in the face of ocean acidification and warming, and although studies of these phenomena have advanced quickly, efforts have focused on pieces of the puzzle rather than integrating them to evaluate ecosystem-level effects. The field is now poised to begin this task, but there are information gaps that first must be overcome before progress can be made. Many of these gaps focus on calcification at the levels of cells, organisms, populations, communities, and ecosystem, and their closure will be made difficult by the complexity of the interdependent processes by which coral reefs respond to ocean acidification, with effects scaling from cells to ecosystems and from microns to kilometers. Existing ecological theories provide an important and largely untapped resource for overcoming these difficulties, and they offer great potential for integrating the effects of ocean acidification across scales on coral reefs.

Book Chapter
Reid, PC, Fischer AC, Lewis-Brown E, Meredith MP, Sparrow M, Andersson AJ, Antia A, Bates NR, Bathmann U, Beaugrand G, Brix H, Dye S, Edwards M, Furevik T, Gangsto R, Hatun H, Hopcroft RR, Kendall M, Kasten S, Keeling R, Le Quere C, Mackenzie FT, Malin G, Mauritzen C, Olafsson J, Paull C, Rignot E, Shimada K, Vogt M, Wallace C, Wang ZM, Washington R.  2009.  Impacts of the Oceans on Climate Change. Advances in Marine Biology, Vol 56. 56( Sims DW, Ed.).:1-150., San Diego: Elsevier Academic Press Inc   10.1016/s0065-2881(09)56001-4   Abstract

The oceans play a key role in climate regulation especially in part buffering (neutralising) the effects of increasing levels of greenhouse gases in the atmosphere and rising global temperatures. This chapter examines how the regulatory processes performed by the oceans alter as a response to climate change and assesses the extent to which positive feedbacks from the ocean may exacerbate climate change. There is clear evidence for rapid change in the oceans. As the main heat store for the world there has been an accelerating change in sea temperatures over the last few decades, which has contributed to rising sea-level. The oceans are also the main store of carbon dioxide (CO(2)), and are estimated to have taken up similar to 40% of anthropogenic-sourced CO(2) from the atmosphere since the beginning of the industrial revolution. A proportion of the carbon uptake is exported via the four ocean 'carbon pumps' (Solubility, Biological, Continental Shelf and Carbonate Counter) to the deep ocean reservoir. Increases in sea temperature and changing planktonic systems and ocean currents may lead to a reduction in the uptake of CO(2) by the ocean; some evidence suggests a suppression of parts of the marine carbon sink is already underway. While the oceans have buffered climate change through the uptake of CO(2) produced by fossil fuel burning this has already had an impact on ocean chemistry through ocean acidification and will continue to do so. Feedbacks to climate change from acidification may result from expected impacts on marine organisms (especially corals and calcareous plankton), ecosystems and biogeochemical cycles. The polar regions of the world are showing the most rapid responses to climate change. As a result of a strong ice-ocean influence, small changes in temperature, salinity and ice cover may trigger large and sudden changes in regional climate with potential downstream feedbacks to the climate of the rest of the world. A warming Arctic Ocean may lead to further releases of the potent greenhouse gas methane from hydrates and permafrost. The Southern Ocean plays a critical role in driving, modifying and regulating global climate change via the carbon cycle and through its impact on adjacent Antarctica. The Antarctic Peninsula has shown some of the most rapid rises in atmospheric and oceanic temperature in the world, with an associated retreat of the majority of glaciers. Parts of the West Antarctic ice sheet are deflating rapidly, very likely due to a change in the flux of oceanic heat to the undersides of the floating ice shelves. The final section on modelling feedbacks from the ocean to climate change identifies limitations and priorities for model development and associated observations. Considering the importance of the oceans to climate change and our limited understanding of climate-related ocean processes, our ability to measure the changes that are taking place are conspicuously inadequate. The chapter highlights the need for a comprehensive, adequately funded and globally extensive ocean observing system to be implemented and sustained as a high priority. Unless feedbacks from the oceans to climate change are adequately included in climate change models, it is possible that the mitigation actions needed to stabilise CO(2) and limit temperature rise over the next century will be underestimated.