Export 9 results:
Sort by: Author [ Title  (Asc)] Type Year
A B [C] D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
MeQuaid, JB, Kustka AB, Obornik M, Horak A, McCrow JR, Karas BJ, Zheng H, Kindeberg T, Andersson AJ, Barbeau KA, Allen AE.  2018.  Carbonate-sensitive phytotransferrin controls high-affinity iron uptake in diatoms. Nature. 555:534-+.   10.1038/nature25982   AbstractWebsite

In vast areas of the ocean, the scarcity of iron controls the growth and productivity of phytoplankton(1,2). Although most dissolved iron in the marine environment is complexed with organic molecules(3), picomolar amounts of labile inorganic iron species (labile iron) are maintained within the euphotic zone(4) and serve as an important source of iron for eukaryotic phytoplankton and particularly for diatoms(5). Genome-enabled studies of labile iron utilization by diatoms have previously revealed novel iron responsive transcripts(6,7), including the ferric iron-concentrating protein ISIP2A(8), but the mechanism behind the acquisition of picomolar labile iron remains unknown. Here we show that ISIP2A is a phytotransferrin that independently and convergently evolved carbonate ion-coordinated ferric iron binding. Deletion of ISIP2A disrupts high-affinity iron uptake in the diatom Phaeodactylum tricornutum, and uptake is restored by complementation with human transferrin. ISIP2A is internalized by endocytosis, and manipulation of the seawater carbonic acid system reveals a second order dependence on the concentrations of labile iron and carbonate ions. In P. tricornutum, the synergistic interaction of labile iron and carbonate ions occurs at environmentally relevant concentrations, revealing that carbonate availability co-limits iron uptake. Phytotransferrin sequences have a broad taxonomic distribution(8) and are abundant in marine environmental genomic datasets(9,10), suggesting that acidification-driven declines in the concentration of seawater carbonate ions will have a negative effect on this globally important eukaryotic iron acquisition mechanism.

Marshall, J, Andersson A, Bates N, Dewar W, Doney S, Edson J, Ferrari R, Forget G, Fratantoni D, Gregg M, Joyce T, Kelly K, Lozier S, Lumpkin R, Maze G, Palter J, Samelson R, Silverthorne K, Skyllingstad E, Straneo F, Talley L, Thomas L, Toole J, Weller R, Climode G.  2009.  The CLIMODE FIELD CAMPAIGN Observing the Cycle of Convection and Restratification over the Gulf Stream. Bulletin of the American Meteorological Society. 90:1337-1350.   10.1175/2009bams2706.1   AbstractWebsite
Andersson, AJ, Bates NR, Jeffries MA, Freeman K, Davidson C, Stringer S, Betzler E, Mackenzie FT.  2013.  Clues from current high CO2 environments on the effects of ocean acidification on CaCO3 preservation. Aquatic Geochemistry.   10.1007/s10498-013-9210-y  
Andersson, AJ, Mackenzie FT, Lerman A.  2005.  Coastal ocean and carbonate systems in the high CO(2) world of the anthropocene. American Journal of Science. 305:875-918.   10.2475/ajs.305.9.875   AbstractWebsite

The behavior of the ocean carbon cycle has been, and will continue to be, modified by the increase in atmospheric CO(2) due to fossil fuel combustion and land-use emissions of this gas. The consequences of a high-CO(2) world and increasing riverine transport of organic matter and nutrients arising from human activities were investigated by means of two biogeochemical box models. Model numerical simulations ranging from the year 1700 to 2300 show that the global coastal ocean changes from a net source to a net sink of atmospheric CO(2) over time; in the 18th and 19th centuries, the direction of the CO(2) flux was from coastal surface waters to the atmosphere, whereas at present or in the near future the net CO(2) flux is into coastal surface waters. These results agree well with recent syntheses of measurements of air-sea CO(2) exchange fluxes from various coastal ocean environments. The model calculations also show that coastal ocean surface water carbonate saturation state would decrease 46 percent by the year 2100 and 73 percent by 2300. Observational evidence from the Pacific and Atlantic Oceans shows that die carbonate saturation state of surface ocean waters has already declined during recent decades. For atolls and other semi-enclosed carbonate systems, the rate of decline depends strongly on the residence time of the water in the system. Based on the experimentally observed positive relationship between saturation state and calcification rate for many calcifying organisms, biogenic production of CaCO(3) may decrease by 42 percent by the year 2100 and by 85 to 90 percent by 2300 relative to its value of about 24 x 10(12) moles C/yr in the year 2000. If the predicted change in carbonate production were to occur along with rising temperatures, it would make it difficult for coral reef and other carbonate systems, to exist as we know them now into future centuries. Because high-latitude, cold-water carbonates presently occur in waters closer to saturation with respect to carbonate minerals than the more strongly supersaturated waters of the lower latitudes, it might be anticipated that the cool-water carbonate systems might feel the effects of rising atmospheric CO(2) (and temperature) before those at lower latitudes. In addition, modeling results show that the carbonate saturation state of coastal sediment pore water will decrease in the future owing to a decreasing pore water pH and increasing CO(2) concentrations attributable to greater deposition and remineralization of land-derived and in situ produced organic matter in sediments. The lowered carbonate saturation state drives selective dissolution of metastable carbonate minerals while a metastable equilibrium is maintained between the pore water and the most soluble carbonate phase present in the sediments. In the future, the average composition of carbonate sediments and cements may change as the more soluble Mg-calcites and aragonite are preferentially dissolved and phases of lower solubility, such as calcites with lower magnesium content, increase in percentage abundance in the sediments.

Andersson, AJ, Mackenzie FT, Lerman A.  2006.  Coastal ocean CO(2)-carbonic acid-carbonate sediment system of the Anthropocene. Global Biogeochemical Cycles. 20   10.1029/2005gb002506   AbstractWebsite

[1] There is little doubt that human activities such as burning of fossil fuels and land use practices have changed and will continue to change the cycling of carbon in the global coastal ocean. In the present study, two biogeochemical box models were used to investigate the consequences of increasing atmospheric CO(2) and subsequent ocean acidification and increasing riverine transport of organic matter and nutrients arising from human activities on land on the global coastal ocean between the years 1700 and 2300. Numerical simulations show that the net flux of CO(2) between coastal ocean surface water and the atmosphere is likely to change during this time from net evasion to net invasion owing to increasing atmospheric CO(2), increasing net ecosystem production arising from increasing nutrient loading to this region, and decreasing net ecosystem calcification due to lower carbonate ion concentration and subsequent lower surface water saturation state with respect to carbonate minerals. Model calculations show that surface water saturation state with respect to calcite will decrease 73% by the year 2300 under a business-as-usual scenario, which in concert with increasing temperature will cause overall biogenic calcification rate to decrease by 90%. Dissolution of carbonate minerals increased by 267% throughout the model simulation. This increase was in part due to increased invasion of atmospheric CO(2), but mainly due to greater deposition and remineralization of land-derived and in situ produced organic matter in the sediments, producing CO(2) that caused pore water pH and carbonate saturation state to decrease. This decrease, in turn, drove selective dissolution of metastable carbonate minerals. As a consequence, the relative carbonate composition of the sediments changed in favor of carbonate phases with lower solubility than that of an average 15 mol% magnesian calcite phase. Model projected changes in surface water carbonate saturation state agree well with observations from the Hawaiian Ocean Time series and the calculated air-sea CO(2) exchanged agrees well with a recent independent estimate of this flux derived from measurements from diverse coastal ecosystems scaled up to the global coastal ocean area.

Lerman, A, Guidry M, Andersson AJ, Mackenzie FT.  2011.  Coastal Ocean Last Glacial Maximum to 2100 CO(2)-Carbonic Acid-Carbonate System: A Modeling Approach. Aquatic Geochemistry. 17:749-773.   10.1007/s10498-011-9146-z   AbstractWebsite

Using coupled terrestrial and coastal zone models, we investigated the impacts of deglaciation and anthropogenic inputs on the CO(2)-H(2)O-CaCO(3) system in global coastal ocean waters from the Last Glacial Maximum (LGM: 18,000 year BP) to the year 2100. With rising sea level and atmospheric CO(2), the carbonate system of coastal ocean water changed significantly. We find that 6 x 10(12) metric tons of carbon were emitted from the coastal ocean, growing due to the sea level rise, from the LGM to late preindustrial time (1700 AD) because of net heterotrophy and calcification processes. This carbon came to reside in the atmosphere and in the growing vegetation on land and in uptake of atmospheric CO(2) through the weathering of rocks on land. It appears that carbonate accumulation, mainly, but not exclusively, in coral reefs from the LGM to late preindustrial time could account for about 24 ppmv of the 100 ppmv rise in atmospheric CO(2), lending some support to the "coral reef hypothesis". In addition, the global coastal ocean is now, or soon will be, a sink of atmospheric CO(2). The temperature rise of 4-5A degrees C since the LGM led to increased weathering rates of inorganic and organic materials on land and enhanced riverine fluxes of total C, N, and P to the coastal ocean of 68%, 108%, and 97%, respectively, from the LGM to late preindustrial time. During the Anthropocene, these trends have been exacerbated owing to rising atmospheric CO(2), due to fossil fuel combustion and land-use practices, other human activities, and rising global temperatures. River fluxes of total reactive C, N, and P are projected to increase from late preindustrial time to the year 2100 by 150%, 380%, and 257%, respectively, modifying significantly the behavior of these element cycles in the coastal ocean, particularly in proximal environments. Despite the fact that the global shoal water carbonate mass has grown extensively since the LGM, the pH(T) (pH values on the total proton scale) of global coastal waters has decreased from similar to 8.35 to similar to 8.18 and the carbonate ion concentration declined by similar to 19% from the LGM to late preindustrial time. The latter represents a rate of decline of about 0.028 mu mol CO(3) (2-) per decade. In comparison, the decrease in coastal water pH(T) from the year 1900 to 2000 was about 8.18-8.08 and is projected to decrease further from about 8.08 to 7.85 between 2000 and 2100, according to the IS92a business-as-usual scenario of CO(2) emissions. Over these 200 years, the carbonate ion concentration will fall by similar to 120 mu mol kg(-1) or 6 mu mol kg(-1) per decade. This decadal rate of decline of the carbonate ion concentration in the Anthropocene is 214 times the average rate of decline for the entire Holocene. Hence, when viewed against the millennial to several millennial timescale of geologic change in the coastal ocean marine carbon system, one can easily appreciate why ocean acidification is the "other CO(2) problem".

Courtney, TA, Andersson AJ, Bates NR, Collins A, Cyronak T, de Putron SJ, Eyre BD, Garley R, Hochberg EJ, Johnson R, Musielewicz S, Noyes TJ, Sabine CL, Sutton AJ, Toncin J, Tribollet A.  2016.  Comparing chemistry and census-based estimates of net ecosystem calcification on a rim reef in Bermuda. Frontiers in Marine Science. 3   10.3389/fmars.2016.00181   Abstract

Coral reef net ecosystem calcification (NEC) has decreased for many Caribbean reefs over recent decades primarily due to a combination of declining coral cover and changing benthic community composition. Chemistry-based approaches to calculate NEC utilize the drawdown of seawater total alkalinity (TA) combined with residence time to calculate an instantaneous measurement of NEC. Census-based approaches combine annual growth rates with benthic cover and reef structural complexity to estimate NEC occurring over annual timescales. Here, NEC was calculated for Hog Reef in Bermuda using both chemistry and census-based NEC techniques to compare the mass-balance generated by the two methods and identify the dominant biocalcifiers at Hog Reef. Our findings indicate close agreement between the annual 2011 census-based NEC 2.35±1.01 kg CaCO3•m-2•y-1 and the chemistry-based NEC 2.23±1.02 kg CaCO3•m-2•y-1 at Hog Reef. An additional record of Hog Reef TA data calculated from an autonomous CO2 mooring measuring pCO2 and modeled pHtotal every 3-hours highlights the dynamic temporal variability in coral reef NEC. This ability for chemistry-based NEC techniques to capture higher frequency variability in coral reef NEC allows the mechanisms driving NEC variability to be explored and tested. Just four coral species, Diploria labyrinthiformis, Pseudodiploria strigosa, Millepora alcicornis, and Orbicella franksi, were identified by the census-based NEC as contributing to 94±19% of the total calcium carbonate production at Hog Reef suggesting these species should be highlighted for conservation to preserve current calcium carbonate production rates at Hog Reef. As coral cover continues to decline globally, the agreement between these NEC estimates suggest that either method, but ideally both methods, may serve as a useful tool for coral reef managers and conservation scientists to monitor the maintenance of coral reef structure and ecosystem services.

Takeshita, Y, Cyronak T, Martz TR, Kindeberg T, Andersson AJ.  2018.  Coral reef carbonate chemistry variability at different functional scales. Frontiers in Marine Science. 5   10.3389/fmars.2018.00175   AbstractWebsite

There is a growing recognition for the need to understand how seawater carbonate chemistry over coral reef environments will change in a high-CO2 world to better assess the impacts of ocean acidification on these valuable ecosystems. Coral reefs modify overlying water column chemistry through biogeochemical processes such as net community organic carbon production (NCR) and calcification (NCC). However, the relative importance and influence of these processes on seawater carbonate chemistry vary across multiple functional scales (defined here as space, time, and benthic community composition), and have not been fully constrained. Here, we use Bermuda as a case study to assess (1) spatiotemporal variability in physical and chemical parameters along a depth gradient at a rim reef location, (2) the spatial variability of total alkalinity (TA) and dissolved inorganic carbon (DIC) over distinct benthic habitats to infer NCC:NCP ratios [< several km(2); rim reef vs. seagrass and calcium carbonate (CaCO3) sediments] on diel timescales, and (3) compare how TA-DIC relationships and NCC:NCP vary as we expand functional scales from local habitats to the entire reef platform (10's of km(2)) on seasonal to interannual timescales. Our results demonstrate that TA-DIC relationships were strongly driven by local benthic metabolism and community composition over diel cycles. However, as the spatial scale expanded to the reef platform, the TA-DIC relationship reflected processes that were integrated over larger spatiotemporal scales, with effects of NCC becoming increasingly more important over NCR. This study demonstrates the importance of considering drivers across multiple functional scales to constrain carbonate chemistry variability over coral reefs.

Eyre, BD, Cyronak T, Drupp P, DeCarlo EH, Sachs JP, Andersson AJ.  2018.  Coral reefs will transition to net dissolving before end of century. Science. 359:908-911.   10.1126/science.aao1118   AbstractWebsite

Ocean acidification refers to the lowering of the ocean's pH due to the uptake of anthropogenic CO2 from the atmosphere. Coral reef calcification is expected to decrease as the oceans become more acidic. Dissolving calciumcarbonate (CaCO3) sands could greatly exacerbate reef loss associated with reduced calcification but is presently poorly constrained. Here we show that CaCO3 dissolution in reef sediments across five globally distributed sites is negatively correlated with the aragonite saturation state (War) of overlying seawater and that CaCO3 sediment dissolution is 10-fold more sensitive to ocean acidification than coral calcification. Consequently, reef sediments globally will transition from net precipitation to net dissolution when seawater War reaches 2.92 +/- 0.16 (expected circa 2050 CE). Notably, some reefs are already experiencing net sediment dissolution.