Export 5 results:
Sort by: Author [ Title  (Asc)] Type Year
A [B] C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
Anthony, KRN, Diaz-Pulido G, Verlinden N, Tilbrook B, Andersson AJ.  2013.  Benthic buffers and boosters of ocean acidification on coral reefs. Biogeosciences. 10:4897-4909.   10.5194/bg-10-4897-2013   AbstractWebsite

Ocean acidification is a threat to marine ecosystems globally. In shallow-water systems, however, ocean acidification can be masked by benthic carbon fluxes, depending on community composition, seawater residence time, and the magnitude and balance of net community production (NCP) and calcification (NCC). Here, we examine how six benthic groups from a coral reef environment on Heron Reef (Great Barrier Reef, Australia) contribute to changes in the seawater aragonite saturation state (Omega(a)). Results of flume studies using intact reef habitats (1.2m by 0.4 m), showed a hierarchy of responses across groups, depending on CO2 level, time of day and water flow. At low CO2 (350-450 mu atm), macroalgae (Chnoospora implexa), turfs and sand elevated Omega(a) of the flume water by around 0.10 to 1.20 h(-1) - normalised to contributions from 1m(2) of benthos to a 1m deep water column. The rate of Omega(a) increase in these groups was doubled under acidification (560-700 mu atm) and high flow (35 compared to 8 cm s(-1)). In contrast, branching corals (Acropora aspera) increased Omega(a) by 0.25 h(-1) at ambient CO2 (350-450 mu atm) during the day, but reduced Omega(a) under acidification and high flow. Nighttime changes in Omega(a) by corals were highly negative (0.6-0.8 h(-1)) and exacerbated by acidification. Calcifying macroalgae (Halimeda spp.) raised Omega(a) by day (by around 0.13 h(-1)), but lowered Omega(a) by a similar or higher amount at night. Analyses of carbon flux contributions from benthic communities with four different compositions to the reef water carbon chemistry across Heron Reef flat and lagoon indicated that the net lowering of Omega(a) by coral-dominated areas can to some extent be countered by long water-residence times in neighbouring areas dominated by turfs, macroalgae and carbonate sand.

Eyre, BD, Andersson AJ, Cyronak T.  2014.  Benthic coral reef calcium carbonate dissolution in an acidifying ocean. Nature Climate Change. 4:969-976.   10.1038/nclimate2380   AbstractWebsite

Changes in CaCO3 dissolution due to ocean acidification are potentially more important than changes in calcification to the future accretion and survival of coral reef ecosystems. As most CaCO3 in coral reefs is stored in old permeable sediments, increasing sediment dissolution due to ocean acidification will result in reef loss even if calcification remains unchanged. Previous studies indicate that CaCO3 dissolution could be more sensitive to ocean acidification than calcification by reef organisms. Observed changes in net ecosystem calcification owing to ocean acidification could therefore be due mainly to increased dissolution rather than decreased calcification. In addition, biologically mediated calcification could potentially adapt, at least partially, to future ocean acidification, while dissolution, which is mostly a geochemical response to changes in seawater chemistry, will not adapt. Here, we review the current knowledge of shallow-water CaCO3 dissolution and demonstrate that dissolution in the context of ocean acidification has been largely overlooked compared with calcification.

Lebrato, M, Andersson AJ, Ries JB, Aronson RB, Lamare MD, Koeve W, Oschlies A, Iglesias-Rodriguez MD, Thatje S, Amsler M, Vos SC, Jones DOB, Ruhl HA, Gates AR, McClintock JB.  2016.  Benthic marine calcifiers coexist with CaCO3-undersaturated seawater worldwide. Global Biogeochemical Cycles. 30:1038-1053.   10.1002/2015GB005260   Abstract

Ocean acidification and decreasing seawater saturation state with respect to calcium carbonate (CaCO3) minerals have raised concerns about the consequences to marine organisms that build CaCO3 structures. A large proportion of benthic marine calcifiers incorporate Mg2+ into their skeletons (Mg-calcite), which, in general, reduces mineral stability. The relative vulnerability of some marine calcifiers to ocean acidification appears linked to the relative solubility of their shell or skeletal mineralogy, although some organisms have sophisticated mechanisms for constructing and maintaining their CaCO3 structures causing deviation from this dependence. Nevertheless, few studies consider seawater saturation state with respect to the actual Mg-calcite mineralogy (ΩMg-x) of a species when evaluating the effect of ocean acidification on that species. Here, a global dataset of skeletal mole % MgCO3 of benthic calcifiers and in situ environmental conditions spanning a depth range of 0 m (subtidal/neritic) to 5600 m (abyssal) was assembled to calculate in situ ΩMg-x. This analysis shows that 24% of the studied benthic calcifiers currently experience seawater mineral undersaturation (ΩMg-x < 1). As a result of ongoing anthropogenic ocean acidification over the next 200 to 3000 years, the predicted decrease in seawater mineral saturation will expose approximately 57% of all studied benthic calcifying species to seawater undersaturation. These observations reveal a surprisingly high proportion of benthic marine calcifiers exposed to seawater that is undersaturated with respect to their skeletal mineralogy, underscoring the importance of using species-specific seawater mineral saturation states when investigating the impact of CO2-induced ocean acidification on benthic marine calcification.

Mackenzie, FT, Andersson A.  2010.  Biological control on diagenesis: influence of bacteria and relevance to ocean acidification. Encyclopedia of Geobiology. Abstract
Mackenzie, FT, Andersson A, et al.  2004.  Boundary exchanges in the global coastal margin: implications for the organic and inorganic carbon cycles. Sea Volume. 13, the global coastal oceanocean: multiscale interdisciplinary processes. ( Robinson A, Brinks K, Eds.)., MA: Harvard University press Abstract