Export 3 results:
Sort by: Author Title Type [ Year  (Desc)]
Takeshita, Y, Cyronak T, Martz TR, Kindeberg T, Andersson AJ.  2018.  Coral reef carbonate chemistry variability at different functional scales. Frontiers in Marine Science. 5   10.3389/fmars.2018.00175   AbstractWebsite

There is a growing recognition for the need to understand how seawater carbonate chemistry over coral reef environments will change in a high-CO2 world to better assess the impacts of ocean acidification on these valuable ecosystems. Coral reefs modify overlying water column chemistry through biogeochemical processes such as net community organic carbon production (NCR) and calcification (NCC). However, the relative importance and influence of these processes on seawater carbonate chemistry vary across multiple functional scales (defined here as space, time, and benthic community composition), and have not been fully constrained. Here, we use Bermuda as a case study to assess (1) spatiotemporal variability in physical and chemical parameters along a depth gradient at a rim reef location, (2) the spatial variability of total alkalinity (TA) and dissolved inorganic carbon (DIC) over distinct benthic habitats to infer NCC:NCP ratios [< several km(2); rim reef vs. seagrass and calcium carbonate (CaCO3) sediments] on diel timescales, and (3) compare how TA-DIC relationships and NCC:NCP vary as we expand functional scales from local habitats to the entire reef platform (10's of km(2)) on seasonal to interannual timescales. Our results demonstrate that TA-DIC relationships were strongly driven by local benthic metabolism and community composition over diel cycles. However, as the spatial scale expanded to the reef platform, the TA-DIC relationship reflected processes that were integrated over larger spatiotemporal scales, with effects of NCC becoming increasingly more important over NCR. This study demonstrates the importance of considering drivers across multiple functional scales to constrain carbonate chemistry variability over coral reefs.

Kuffner, IB, Andersson AJ, Jokiel PL, Rodgers KS, Mackenzie FT.  2008.  Decreased abundance of crustose coralline algae due to ocean acidification. Nature Geoscience. 1:114-117.   10.1038/ngeo100   AbstractWebsite

Owing to anthropogenic emissions, atmospheric concentrations of carbon dioxide could almost double between 2006 and 2100 according to business- as- usual carbon dioxide emission scenarios(1). Because the ocean absorbs carbon dioxide from the atmosphere(2-4), increasing atmospheric carbon dioxide concentrations will lead to increasing dissolved inorganic carbon and carbon dioxide in surface ocean waters, and hence acidification and lower carbonate saturation states(2,5). As a consequence, it has been suggested that marine calcifying organisms, for example corals, coralline algae, molluscs and foraminifera, will have difficulties producing their skeletons and shells at current rates(6,7), with potentially severe implications for marine ecosystems, including coral reefs(6,8 - 11). Here we report a seven-week experiment exploring the effects of ocean acidification on crustose coralline algae, a cosmopolitan group of calcifying algae that is ecologically important in most shallow-water habitats(12-14). Six outdoor mesocosms were continuously supplied with sea water from the adjacent reef and manipulated to simulate conditions of either ambient or elevated seawater carbon dioxide concentrations. The recruitment rate and growth of crustose coralline algae were severely inhibited in the elevated carbon dioxide mesocosms. Our findings suggest that ocean acidification due to human activities could cause significant change to benthic community structure in shallow-warm-water carbonate ecosystems.

Andersson, AJ, Bates NR, Mackenzie FT.  2007.  Dissolution of carbonate sediments under rising pCO(2) and ocean acidification: Observations from Devil's Hole, Bermuda. Aquatic Geochemistry. 13:237-264.   10.1007/s10498-007-9018-8   AbstractWebsite

Rising atmospheric pCO(2) and ocean acidification originating from human activities could result in increased dissolution of metastable carbonate minerals in shallow-water marine sediments. In the present study, in situ dissolution of carbonate sedimentary particles in Devil's Hole, Bermuda, was observed during summer when thermally driven density stratification restricted mixing between the bottom water and the surface mixed layer and microbial decomposition of organic matter in the subthermocline layer produced pCO(2) levels similar to or higher than those levels anticipated by the end of the 21st century. Trends in both seawater chemistry and the composition of sediments in Devil's Hole indicate that Mg-calcite minerals are subject to selective dissolution under conditions of elevated pCO(2). The derived rates of dissolution based on observed changes in excess alkalinity and estimates of vertical eddy diffusion ranged from 0.2 mmol to 0.8 mmol CaCO3 m(-2) h(-1). On a yearly basis, this range corresponds to 175-701 g CaCO3 m(-2) year(-1); the latter rate is close to 50% of the estimate of the current average global coral reef calcification rate of about 1,500 g CaCO3 m(-2) year(-1). Considering a reduction in marine calcification of 40% by the year 2100, or 90% by 2300, as a result of surface ocean acidification, the combination of high rates of carbonate dissolution and reduced rates of calcification implies that coral reefs and other carbonate sediment environments within the 21st and following centuries could be subject to a net loss in carbonate material as a result of increasing pCO(2) arising from burning of fossil fuels.