Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
McLeod, E, Anthony KRN, Andersson A, Beeden R, Golbuu Y, Kleypas J, Kroeker K, Manzello D, Salm RV, Schuttenberg H, Smith JE.  2013.  Preparing to manage coral reefs for ocean acidification: lessons from coral bleaching. Frontiers in Ecology and the Environment. 11:20-27.   10.1890/110240   AbstractWebsite

Ocean acidification is a direct consequence of increasing atmospheric carbon dioxide concentrations and is expected to compromise the structure and function of coral reefs within this century. Research into the effects of ocean acidification on coral reefs has focused primarily on measuring and predicting changes in seawater carbon (C) chemistry and the biological and geochemical responses of reef organisms to such changes. To date, few ocean acidification studies have been designed to address conservation planning and management priorities. Here, we discuss how existing marine protected area design principles developed to address coral bleaching may be modified to address ocean acidification. We also identify five research priorities needed to incorporate ocean acidification into conservation planning and management: (1) establishing an ocean C chemistry baseline, (2) establishing ecological baselines, (3) determining species/habitat/community sensitivity to ocean acidification, (4) projecting changes in seawater carbonate chemistry, and (5) identifying potentially synergistic effects of multiple stressors.

Andersson, AJ, Krug LA, Bates NR, Doney SC.  2013.  Sea-air CO2 flux in the North Atlantic subtropical gyre: Role and influence of Sub-Tropical Mode Water formation. Deep-Sea Research Part Ii-Topical Studies in Oceanography. 91:57-70.   10.1016/j.dsr2.2013.02.022   AbstractWebsite

The uptake of atmospheric carbon dioxide (CO2) into the mid-latitudes of the North Atlantic Ocean through the production of wintertime Sub-Tropical Mode Water (STMW) also known as Eighteen Degree Water (EDW) is poorly quantified and constrained. Nonetheless, it has been proposed that the EDW could serve as an important short-term sink of anthropogenic CO2. The objective of the present investigation was to determine sea-air CO2 gas exchange rates and seawater CO2 dynamics during wintertime formation of EDW in the North Atlantic Ocean. During 2006 and 2007, several research cruises were undertaken as part of the CLIMODE project across the northwest Atlantic Ocean with the intent to study the pre-conditioning, formation, and the evolution of EDW. Sea-air CO2 exchange rates were calculated based on measurements of atmospheric pCO(2), surface seawater pCO(2) and wind speed with positive values denoting a net flux from the surface ocean to the atmosphere. Average sea-air CO2 flux calculated along cruise tracks in the formation region equaled -18 +/- 6 mmol CO2 m(-2) d(-1) and -14 +/- 9 mmol CO2 m(-2) d(-1) in January of 2006 and March of 2007, respectively. Average sea-air CO2 flux in newly formed outcropping EDW in February and March of 2007 equaled -28 +/- 10 mmol CO2 m(-2) d(-1). These estimates exceeded previous flux estimates in this region by 40-185%. The magnitude of CO2 flux was mainly controlled by the observed variability in wind speed and Delta pCO(2) with smaller changes owing to variability in sea surface temperature. Small but statistically significant difference (4.1 +/- 2.6 mu mol kg(-1)) in dissolved inorganic carbon (DIC) was observed in two occurrences of newly formed EDW in February and March of 2007. This difference was explained either by differences in the relative contribution from different water masses involved in the initial formation process of EDW or temporal changes owing to sea-air CO2 exchange (similar to 25%) and vertical and/or lateral mixing (similar to 75%) with water masses high in DIC from the cold side of the Gulf Stream and/or from below the permanent thermocline. Based on the present estimate of sea-air CO2 flux in newly formed EDW and a formation rate of 9.3 Sv y (Sverdrup year = 10(6) m(3) s(-1) flow sustained for 1 year), CO2 uptake by newly formed EDW may constitute 3-6% of the total North Atlantic CO2 sink. However, advection of surface waters that carry an elevated burden of anthropogenic CO2 that are transported to the formation region and transformed to mode water may contribute additional CO2 to the total net uptake and sequestration of anthropogenic CO2 to the ocean interior. (c) 2013 Elsevier Ltd. All rights reserved.

Jokiel, PL, Rodgers KS, Kuffner IB, Andersson AJ, Cox EF, Mackenzie FT.  2008.  Ocean acidification and calcifying reef organisms: a mesocosm investigation. Coral Reefs. 27:473-483.   10.1007/s00338-008-0380-9   AbstractWebsite

A long-term (10 months) controlled experiment was conducted to test the impact of increased partial pressure of carbon dioxide (pCO(2)) on common calcifying coral reef organisms. The experiment was conducted in replicate continuous flow coral reef mesocosms flushed with unfiltered sea water from Kaneohe Bay, Oahu, Hawaii. Mesocosms were located in full sunlight and experienced diurnal and seasonal fluctuations in temperature and sea water chemistry characteristic of the adjacent reef flat. Treatment mesocosms were manipulated to simulate an increase in pCO(2) to levels expected in this century [midday pCO(2) levels exceeding control mesocosms by 365 +/- 130 mu atm (mean +/- sd)]. Acidification had a profound impact on the development and growth of crustose coralline algae (CCA) populations. During the experiment, CCA developed 25% cover in the control mesocosms and only 4% in the acidified mesocosms, representing an 86% relative reduction. Free-living associations of CCA known as rhodoliths living in the control mesocosms grew at a rate of 0.6 g buoyant weight year(-1) while those in the acidified experimental treatment decreased in weight at a rate of 0.9 g buoyant weight year(-1), representing a 250% difference. CCA play an important role in the growth and stabilization of carbonate reefs, so future changes of this magnitude could greatly impact coral reefs throughout the world. Coral calcification decreased between 15% and 20% under acidified conditions. Linear extension decreased by 14% under acidified conditions in one experiment. Larvae of the coral Pocillopora damicornis were able to recruit under the acidified conditions. In addition, there was no significant difference in production of gametes by the coral Montipora capitata after 6 months of exposure to the treatments.

Kuffner, IB, Andersson AJ, Jokiel PL, Rodgers KS, Mackenzie FT.  2008.  Decreased abundance of crustose coralline algae due to ocean acidification. Nature Geoscience. 1:114-117.   10.1038/ngeo100   AbstractWebsite

Owing to anthropogenic emissions, atmospheric concentrations of carbon dioxide could almost double between 2006 and 2100 according to business- as- usual carbon dioxide emission scenarios(1). Because the ocean absorbs carbon dioxide from the atmosphere(2-4), increasing atmospheric carbon dioxide concentrations will lead to increasing dissolved inorganic carbon and carbon dioxide in surface ocean waters, and hence acidification and lower carbonate saturation states(2,5). As a consequence, it has been suggested that marine calcifying organisms, for example corals, coralline algae, molluscs and foraminifera, will have difficulties producing their skeletons and shells at current rates(6,7), with potentially severe implications for marine ecosystems, including coral reefs(6,8 - 11). Here we report a seven-week experiment exploring the effects of ocean acidification on crustose coralline algae, a cosmopolitan group of calcifying algae that is ecologically important in most shallow-water habitats(12-14). Six outdoor mesocosms were continuously supplied with sea water from the adjacent reef and manipulated to simulate conditions of either ambient or elevated seawater carbon dioxide concentrations. The recruitment rate and growth of crustose coralline algae were severely inhibited in the elevated carbon dioxide mesocosms. Our findings suggest that ocean acidification due to human activities could cause significant change to benthic community structure in shallow-warm-water carbonate ecosystems.