Publications

Export 4 results:
Sort by: Author Title Type [ Year  (Desc)]
2018
Sato, KN, Andersson AJ, Day JMD, Taylor JRA, Frank MB, Jung JY, McKittrick J, Levin LA.  2018.  Response of sea urchin fitness traits to environmental gradients across the Southern California oxygen minimum zone. Frontiers in Marine Science. 5   10.3389/fmars.2018.00258   AbstractWebsite

Marine calcifiers are considered to be among the most vulnerable taxa to climate-forced environmental changes occurring on continental margins with effects hypothesized to occur on microstructural, biomechanical, and geochemical properties of carbonate structures. Natural gradients in temperature, salinity, oxygen, and pH on an upwelling margin combined with the broad depth distribution (100-1,100 m) of the pink fragile sea urchin, Strongylocentrotus (formerly Allocentrotus) fragilis, along the southern California shelf and slope provide an ideal system to evaluate potential effects of multiple climate variables on carbonate structures in situ. We measured, for the first time, trait variability across four distinct depth zones using natural gradients as analogues for species-specific implications of oxygen minimum zone (OMZ) expansion, deoxygenation and ocean acidification. Although S. fragilis may likely be tolerant of future oxygen and pH decreases predicted during the twenty-first century, we determine from adults collected across multiple depth zones that urchin size and potential reproductive fitness (gonad index) are drastically reduced in the OMZ core (450-900 m) compared to adjacent zones. Increases in porosity and mean pore size coupled with decreases in mechanical nanohardness and stiffness of the calcitic endoskeleton in individuals collected from lower pH(Total) (7.57-7.59) and lower dissolved oxygen (13-42 mu mol kg(-1)) environments suggest that S. fragilis may be potentially vulnerable to crushing predators if these conditions become more widespread in the future. In addition, elemental composition indicates that S. fragilis has a skeleton composed of the low Mg-calcite mineral phase of calcium carbonate (mean Mg/Ca = 0.02 mol mol(-1)), with Mg/Ca values measured in the lower end of values reported for sea urchins known to date. Together these findings suggest that ongoing declines in oxygen and pH will likely affect the ecology and fitness of a dominant echinoid on the California margin.

2017
Courtney, TA, Lebrato M, Bates NR, Collins A, de Putron SJ, Garley R, Johnson R, Molinero JC, Noyes TJ, Sabine CL, Andersson AJ.  2017.  Environmental controls on modern scleractinian coral and reef-scale calcification. Science Advances. 3   10.1126/sciadv.1701356   AbstractWebsite

Modern reef-building corals sustain a wide range of ecosystem services because of their ability to build calcium carbonate reef systems. The influence of environmental variables on coral calcification rates has been extensively studied, but our understanding of their relative importance is limited by the absence of in situ observations and the ability to decouple the interactions between different properties. We show that temperature is the primary driver of coral colony (Porites astreoides and Diploria labyrinthiformis) and reef-scale calcification rates over a 2-year monitoring period from the Bermuda coral reef. On the basis of multimodel climate simulations (Coupled Model Intercomparison Project Phase 5) and assuming sufficient coral nutrition, our results suggest that P. astreoides and D. labyrinthiformis coral calcification rates in Bermuda could increase throughout the 21st century as a result of gradual warming predicted under a minimum CO2 emissions pathway [ representative concentration pathway (RCP) 2.6] with positive 21st-century calcification rates potentially maintained under a reduced CO2 emissions pathway (RCP 4.5). These results highlight the potential benefits of rapid reductions in global anthropogenic CO2 emissions for 21st-century Bermuda coral reefs and the ecosystem services they provide.

2012
Kuffner, IB, Jokiel PL, Rodgers KS, Andersson AJ, Mackenzie FT.  2012.  An apparent "vital effect" of calcification rate on the Sr/Ca temperature proxy in the reef coral Montipora capitata. Geochemistry Geophysics Geosystems. 13   10.1029/2012gc004128   AbstractWebsite

Measuring the strontium to calcium ratio in coral skeletons reveals information on seawater temperatures during skeletal deposition, but studies have shown additional variables may affect the ratio. Here we measured Sr/Ca in the reef coral Montipora capitata grown in six mesocosms continuously supplied with seawater from the adjacent reef flat. Three mesocosms were ambient controls, and three had seawater chemistry simulating "ocean acidification" (OA). We found that Sr/Ca was not affected by the OA treatment and neither was coral calcification for these small colonies (larger colonies did show an OA effect). The lack of OA effects allowed us to test the hypothesis that coral growth rate can affect Sr/Ca using the natural range in calcification rates of the corals grown at the same temperature. We found that Sr/Ca was inversely related to calcification rate (Sr/Ca = 9.385 - 0.0040 (calcification rate)). Using a previously published calibration curve for this species, a 22 mg d(-1) colony(-1) increase in calcification rate introduced a 1 degrees C warmer temperature estimate, with the 27 corals reporting "temperatures" ranging from 24.9 to 28.9 degrees C, with mean 26.6 +/- 0.9 degrees C standard deviation. Our results lend support to hypotheses invoking kinetic processes and growth rate to explain vital effects on Sr/Ca. However, uncertainty in the slope of the regression of Sr/Ca on calcification and a low R-squared value lead us to conclude that Sr/Ca could still be a useful proxy in this species given sufficient replication or by including growth rate in the calibration.

2003
Andersson, AJ, Mackenzie FT, Ver LM.  2003.  Solution of shallow-water carbonates: An insignificant buffer against rising atmospheric CO2. Geology. 31:513-516.   10.1130/0091-7613(2003)031<0513:soscai>2.0.co;2   AbstractWebsite

Model predictions suggest that the saturation state of surface ocean waters with respect to carbonate minerals will decline during the twenty-first century owing to increased invasion of atmospheric CO2. As a result, calcareous organisms may have difficulty calcifying, leading to production of weaker skeletons and greater vulnerability to erosion. Alternatively, it has been suggested that there will be no significant impact on coral reef ecosystems because any changes in saturation state and pH will be restored by dissolution of metastable carbonate minerals. To resolve this controversy, we employ a physical-biogeochemical box model representative of the shallow-water ocean environment. Numerical simulations demonstrate that the carbonate saturation state of surface waters could significantly decrease and hamper the biogenic production of CaCO3 during the twenty-first century. Similarly, the average saturation state of marine pore waters could decline significantly, inducing dissolution of metastable carbonate phases within the pore-water-sediment system. Such dissolution could buffer the carbon chemistry of the pore waters, but overlying surface waters of reefs and other shallow-water carbonate environments will not accumulate sufficient alkalinity to buffer pH or carbonate saturation state changes owing to invasion of atmospheric CO2.