Publications

Export 3 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R [S] T U V W X Y Z   [Show ALL]
S
Sato, KN, Andersson AJ, Day JMD, Taylor JRA, Frank MB, Jung JY, McKittrick J, Levin LA.  2018.  Response of sea urchin fitness traits to environmental gradients across the Southern California oxygen minimum zone. Frontiers in Marine Science. 5   10.3389/fmars.2018.00258   AbstractWebsite

Marine calcifiers are considered to be among the most vulnerable taxa to climate-forced environmental changes occurring on continental margins with effects hypothesized to occur on microstructural, biomechanical, and geochemical properties of carbonate structures. Natural gradients in temperature, salinity, oxygen, and pH on an upwelling margin combined with the broad depth distribution (100-1,100 m) of the pink fragile sea urchin, Strongylocentrotus (formerly Allocentrotus) fragilis, along the southern California shelf and slope provide an ideal system to evaluate potential effects of multiple climate variables on carbonate structures in situ. We measured, for the first time, trait variability across four distinct depth zones using natural gradients as analogues for species-specific implications of oxygen minimum zone (OMZ) expansion, deoxygenation and ocean acidification. Although S. fragilis may likely be tolerant of future oxygen and pH decreases predicted during the twenty-first century, we determine from adults collected across multiple depth zones that urchin size and potential reproductive fitness (gonad index) are drastically reduced in the OMZ core (450-900 m) compared to adjacent zones. Increases in porosity and mean pore size coupled with decreases in mechanical nanohardness and stiffness of the calcitic endoskeleton in individuals collected from lower pH(Total) (7.57-7.59) and lower dissolved oxygen (13-42 mu mol kg(-1)) environments suggest that S. fragilis may be potentially vulnerable to crushing predators if these conditions become more widespread in the future. In addition, elemental composition indicates that S. fragilis has a skeleton composed of the low Mg-calcite mineral phase of calcium carbonate (mean Mg/Ca = 0.02 mol mol(-1)), with Mg/Ca values measured in the lower end of values reported for sea urchins known to date. Together these findings suggest that ongoing declines in oxygen and pH will likely affect the ecology and fitness of a dominant echinoid on the California margin.

Smith, SR, Sarkis S, Murdoch TJT, Weil EA, Croquer A, Bates NR, Johnson RJ, de Putron S, Andersson AJ.  2013.  Threats to coral reefs of Bermuda. Coral reefs of the United Kingdom overseas territories, Coral Reefs of the World. Vol. 4( Sheppard CRC, Ed.)., Dordrecht: Springer Science + Business Media   10.1007/978-94-007-5965-7_13  
Sutton, AJ, Feely RA, Maenner-Jones S, Musielwicz S, Osborne J, Dietrich C, Monacci N, Cross J, Bott R, Kozyr A, Andersson AJ, Bates NR, Cai WJ, Cronin MF, DeCarlo EH, Hales B, Howden SD, Lee CM, Manzello DP, McPhaden MJ, Melendez M, Mickett JB, Newton JA, Noakes SE, Noh JH, Olafsdottir SR, Salisbury JE, Send U, Trull TW, Vandemark DC, Weller RA.  2019.  Autonomous seawater pCO(2) and pH time series from 40 surface buoys and the emergence of anthropogenic trends. Earth System Science Data. 11:421-439.   10.5194/essd-11-421-2019   AbstractWebsite

Ship-based time series, some now approaching over 3 decades long, are critical climate records that have dramatically improved our ability to characterize natural and anthropogenic drivers of ocean carbon dioxide (CO2) uptake and biogeochemical processes. Advancements in autonomous marine carbon sensors and technologies over the last 2 decades have led to the expansion of observations at fixed time series sites, thereby improving the capability of characterizing sub-seasonal variability in the ocean. Here, we present a data product of 40 individual autonomous moored surface ocean pCO(2) (partial pressure of CO2) time series established between 2004 and 2013, 17 also include autonomous pH measurements. These time series characterize a wide range of surface ocean carbonate conditions in different oceanic (17 sites), coastal (13 sites), and coral reef (10 sites) regimes. A time of trend emergence (ToE) methodology applied to the time series that exhibit well-constrained daily to interannual variability and an estimate of decadal variability indicates that the length of sustained observations necessary to detect statistically significant anthropogenic trends varies by marine environment. The ToE estimates for seawater pCO(2) and pH range from 8 to 15 years at the open ocean sites, 16 to 41 years at the coastal sites, and 9 to 22 years at the coral reef sites. Only two open ocean pCO(2) time series, Woods Hole Oceanographic Institution Hawaii Ocean Time-series Station (WHOTS) in the subtropical North Pacific and Stratus in the South Pacific gyre, have been deployed longer than the estimated trend detection time and, for these, deseasoned monthly means show estimated anthropogenic trends of 1.9 +/- 0.3 and 1.6 +/- 0.3 mu atm yr(-1), respectively. In the future, it is possible that updates to this product will allow for the estimation of anthropogenic trends at more sites; however, the product currently provides a valuable tool in an accessible format for evaluating climatology and natural variability of surface ocean carbonate chemistry in a variety of regions. Data are available at https.//doi. org/10.7289/V5DB8043 and https.//www.nodc.noaa.gov/ocads/oceans/Moorings/ndp097.html (Sutton et al., 2018).