Export 2 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D E F G H I J [K] L M N O P Q R S T U V W X Y Z   [Show ALL]
Kuffner, IB, Andersson AJ, Jokiel PL, Rodgers KS, Mackenzie FT.  2008.  Decreased abundance of crustose coralline algae due to ocean acidification. Nature Geoscience. 1:114-117.   10.1038/ngeo100   AbstractWebsite

Owing to anthropogenic emissions, atmospheric concentrations of carbon dioxide could almost double between 2006 and 2100 according to business- as- usual carbon dioxide emission scenarios(1). Because the ocean absorbs carbon dioxide from the atmosphere(2-4), increasing atmospheric carbon dioxide concentrations will lead to increasing dissolved inorganic carbon and carbon dioxide in surface ocean waters, and hence acidification and lower carbonate saturation states(2,5). As a consequence, it has been suggested that marine calcifying organisms, for example corals, coralline algae, molluscs and foraminifera, will have difficulties producing their skeletons and shells at current rates(6,7), with potentially severe implications for marine ecosystems, including coral reefs(6,8 - 11). Here we report a seven-week experiment exploring the effects of ocean acidification on crustose coralline algae, a cosmopolitan group of calcifying algae that is ecologically important in most shallow-water habitats(12-14). Six outdoor mesocosms were continuously supplied with sea water from the adjacent reef and manipulated to simulate conditions of either ambient or elevated seawater carbon dioxide concentrations. The recruitment rate and growth of crustose coralline algae were severely inhibited in the elevated carbon dioxide mesocosms. Our findings suggest that ocean acidification due to human activities could cause significant change to benthic community structure in shallow-warm-water carbonate ecosystems.

Kuffner, IB, Jokiel PL, Rodgers KS, Andersson AJ, Mackenzie FT.  2012.  An apparent "vital effect" of calcification rate on the Sr/Ca temperature proxy in the reef coral Montipora capitata. Geochemistry Geophysics Geosystems. 13   10.1029/2012gc004128   AbstractWebsite

Measuring the strontium to calcium ratio in coral skeletons reveals information on seawater temperatures during skeletal deposition, but studies have shown additional variables may affect the ratio. Here we measured Sr/Ca in the reef coral Montipora capitata grown in six mesocosms continuously supplied with seawater from the adjacent reef flat. Three mesocosms were ambient controls, and three had seawater chemistry simulating "ocean acidification" (OA). We found that Sr/Ca was not affected by the OA treatment and neither was coral calcification for these small colonies (larger colonies did show an OA effect). The lack of OA effects allowed us to test the hypothesis that coral growth rate can affect Sr/Ca using the natural range in calcification rates of the corals grown at the same temperature. We found that Sr/Ca was inversely related to calcification rate (Sr/Ca = 9.385 - 0.0040 (calcification rate)). Using a previously published calibration curve for this species, a 22 mg d(-1) colony(-1) increase in calcification rate introduced a 1 degrees C warmer temperature estimate, with the 27 corals reporting "temperatures" ranging from 24.9 to 28.9 degrees C, with mean 26.6 +/- 0.9 degrees C standard deviation. Our results lend support to hypotheses invoking kinetic processes and growth rate to explain vital effects on Sr/Ca. However, uncertainty in the slope of the regression of Sr/Ca on calcification and a low R-squared value lead us to conclude that Sr/Ca could still be a useful proxy in this species given sufficient replication or by including growth rate in the calibration.