Publications

Export 3 results:
Sort by: [ Author  (Asc)] Title Type Year
A B C D [E] F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
E
Edmunds, PJ, Comeau S, Lantz C, Andersson A, Briggs C, Cohen A, Gattuso JP, Grady JM, Gross K, Johnson M, Muller EB, Ries JB, Tambutte S, Tambutte E, Venn A, Carpenter RC.  2016.  Integrating the effects of ocean acidification across functional scales on tropical coral reefs. Bioscience. 66:350-362.   10.1093/biosci/biw023   AbstractWebsite

There are concerns about the future of coral reefs in the face of ocean acidification and warming, and although studies of these phenomena have advanced quickly, efforts have focused on pieces of the puzzle rather than integrating them to evaluate ecosystem-level effects. The field is now poised to begin this task, but there are information gaps that first must be overcome before progress can be made. Many of these gaps focus on calcification at the levels of cells, organisms, populations, communities, and ecosystem, and their closure will be made difficult by the complexity of the interdependent processes by which coral reefs respond to ocean acidification, with effects scaling from cells to ecosystems and from microns to kilometers. Existing ecological theories provide an important and largely untapped resource for overcoming these difficulties, and they offer great potential for integrating the effects of ocean acidification across scales on coral reefs.

Eyre, BD, Cyronak T, Drupp P, DeCarlo EH, Sachs JP, Andersson AJ.  2018.  Coral reefs will transition to net dissolving before end of century. Science. 359:908-911.   10.1126/science.aao1118   AbstractWebsite

Ocean acidification refers to the lowering of the ocean's pH due to the uptake of anthropogenic CO2 from the atmosphere. Coral reef calcification is expected to decrease as the oceans become more acidic. Dissolving calciumcarbonate (CaCO3) sands could greatly exacerbate reef loss associated with reduced calcification but is presently poorly constrained. Here we show that CaCO3 dissolution in reef sediments across five globally distributed sites is negatively correlated with the aragonite saturation state (War) of overlying seawater and that CaCO3 sediment dissolution is 10-fold more sensitive to ocean acidification than coral calcification. Consequently, reef sediments globally will transition from net precipitation to net dissolution when seawater War reaches 2.92 +/- 0.16 (expected circa 2050 CE). Notably, some reefs are already experiencing net sediment dissolution.

Eyre, BD, Andersson AJ, Cyronak T.  2014.  Benthic coral reef calcium carbonate dissolution in an acidifying ocean. Nature Climate Change. 4:969-976.   10.1038/nclimate2380   AbstractWebsite

Changes in CaCO3 dissolution due to ocean acidification are potentially more important than changes in calcification to the future accretion and survival of coral reef ecosystems. As most CaCO3 in coral reefs is stored in old permeable sediments, increasing sediment dissolution due to ocean acidification will result in reef loss even if calcification remains unchanged. Previous studies indicate that CaCO3 dissolution could be more sensitive to ocean acidification than calcification by reef organisms. Observed changes in net ecosystem calcification owing to ocean acidification could therefore be due mainly to increased dissolution rather than decreased calcification. In addition, biologically mediated calcification could potentially adapt, at least partially, to future ocean acidification, while dissolution, which is mostly a geochemical response to changes in seawater chemistry, will not adapt. Here, we review the current knowledge of shallow-water CaCO3 dissolution and demonstrate that dissolution in the context of ocean acidification has been largely overlooked compared with calcification.