Publications

Export 4 results:
Sort by: [ Author  (Asc)] Title Type Year
A B [C] D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
C
Courtney, TA, Andersson AJ, Bates NR, Collins A, Cyronak T, de Putron SJ, Eyre BD, Garley R, Hochberg EJ, Johnson R, Musielewicz S, Noyes TJ, Sabine CL, Sutton AJ, Toncin J, Tribollet A.  2016.  Comparing chemistry and census-based estimates of net ecosystem calcification on a rim reef in Bermuda. Frontiers in Marine Science. 3   10.3389/fmars.2016.00181   Abstract

Coral reef net ecosystem calcification (NEC) has decreased for many Caribbean reefs over recent decades primarily due to a combination of declining coral cover and changing benthic community composition. Chemistry-based approaches to calculate NEC utilize the drawdown of seawater total alkalinity (TA) combined with residence time to calculate an instantaneous measurement of NEC. Census-based approaches combine annual growth rates with benthic cover and reef structural complexity to estimate NEC occurring over annual timescales. Here, NEC was calculated for Hog Reef in Bermuda using both chemistry and census-based NEC techniques to compare the mass-balance generated by the two methods and identify the dominant biocalcifiers at Hog Reef. Our findings indicate close agreement between the annual 2011 census-based NEC 2.35±1.01 kg CaCO3•m-2•y-1 and the chemistry-based NEC 2.23±1.02 kg CaCO3•m-2•y-1 at Hog Reef. An additional record of Hog Reef TA data calculated from an autonomous CO2 mooring measuring pCO2 and modeled pHtotal every 3-hours highlights the dynamic temporal variability in coral reef NEC. This ability for chemistry-based NEC techniques to capture higher frequency variability in coral reef NEC allows the mechanisms driving NEC variability to be explored and tested. Just four coral species, Diploria labyrinthiformis, Pseudodiploria strigosa, Millepora alcicornis, and Orbicella franksi, were identified by the census-based NEC as contributing to 94±19% of the total calcium carbonate production at Hog Reef suggesting these species should be highlighted for conservation to preserve current calcium carbonate production rates at Hog Reef. As coral cover continues to decline globally, the agreement between these NEC estimates suggest that either method, but ideally both methods, may serve as a useful tool for coral reef managers and conservation scientists to monitor the maintenance of coral reef structure and ecosystem services.

Courtney, TA, Lebrato M, Bates NR, Collins A, de Putron SJ, Garley R, Johnson R, Molinero JC, Noyes TJ, Sabine CL, Andersson AJ.  2017.  Environmental controls on modern scleractinian coral and reef-scale calcification. Science Advances. 3   10.1126/sciadv.1701356   AbstractWebsite

Modern reef-building corals sustain a wide range of ecosystem services because of their ability to build calcium carbonate reef systems. The influence of environmental variables on coral calcification rates has been extensively studied, but our understanding of their relative importance is limited by the absence of in situ observations and the ability to decouple the interactions between different properties. We show that temperature is the primary driver of coral colony (Porites astreoides and Diploria labyrinthiformis) and reef-scale calcification rates over a 2-year monitoring period from the Bermuda coral reef. On the basis of multimodel climate simulations (Coupled Model Intercomparison Project Phase 5) and assuming sufficient coral nutrition, our results suggest that P. astreoides and D. labyrinthiformis coral calcification rates in Bermuda could increase throughout the 21st century as a result of gradual warming predicted under a minimum CO2 emissions pathway [ representative concentration pathway (RCP) 2.6] with positive 21st-century calcification rates potentially maintained under a reduced CO2 emissions pathway (RCP 4.5). These results highlight the potential benefits of rapid reductions in global anthropogenic CO2 emissions for 21st-century Bermuda coral reefs and the ecosystem services they provide.

Cyronak, T, Andersson AJ, Langdon C, Albright R, Bates NR, Caldeira K, Carlton R, Corredor JE, Dunbar RB, Enochs I, Erez J, Eyre BD, Gattuso JP, Gledhill D, Kayanne H, Kline DI, Koweek DA, Lantz C, Lazar B, Manzello D, McMahon A, Melendez M, Page HN, Santos IR, Schulz KG, Shaw E, Silverman J, Suzuki A, Teneva L, Watanabe A, Yamamoto S.  2018.  Taking the metabolic pulse of the world's coral reefs. Plos One. 13   10.1371/journal.pone.0190872   AbstractWebsite

Worldwide, coral reef ecosystems are experiencing increasing pressure from a variety of anthropogenic perturbations including ocean warming and acidification, increased sedimentation, eutrophication, and overfishing, which could shift reefs to a condition of net calcium carbonate (CaCO3) dissolution and erosion. Herein, we determine the net calcification potential and the relative balance of net organic carbon metabolism (net community production; NCP) and net inorganic carbon metabolism (net community calcification; NCC) within 23 coral reef locations across the globe. In light of these results, we consider the suitability of using these two metrics developed from total alkalinity (TA) and dissolved inorganic carbon (DIC) measurements collected on different spatiotemporal scales to monitor coral reef biogeochemistry under anthropogenic change. All reefs in this study were net calcifying for the majority of observations as inferred from alkalinity depletion relative to offshore, although occasional observations of net dissolution occurred at most locations. However, reefs with lower net calcification potential (i.e., lower TA depletion) could shift towards net dissolution sooner than reefs with a higher potential. The percent influence of organic carbon fluxes on total changes in dissolved inorganic carbon (DIC) (i.e., NCP compared to the sum of NCP and NCC) ranged from 32% to 88% and reflected inherent biogeochemical differences between reefs. Reefs with the largest relative percentage of NCP experienced the largest variability in seawater pH for a given change in DIC, which is directly related to the reefs ability to elevate or suppress local pH relative to the open ocean. This work highlights the value of measuring coral reef carbonate chemistry when evaluating their susceptibility to ongoing global environmental change and offers a baseline from which to guide future conservation efforts aimed at preserving these valuable ecosystems.

Cyronak, T, Andersson AJ, D'Angelo S, Bresnahan P, Davidson C, Griffin A, Kindeberg T, Pennise J, Takeshita Y, White M.  2018.  Short-term spatial and temporal carbonate chemistry variability in two contrasting seagrass meadows: Implications for pH buffering capacities. Estuaries and Coasts. 41:1282-1296.   10.1007/s12237-017-0356-5   AbstractWebsite

It has been hypothesized that highly productive coastal ecosystems, such as seagrass meadows, could lead to the establishment of ocean acidification (OA) refugia, or areas of elevated pH and aragonite saturation state (Omega(a)) compared to source seawater. However, seagrass ecosystems experience extreme variability in carbonate chemistry across short temporal and small spatial scales, which could impact the pH buffering capacity of these potential refugia. Herein, short-term (hourly to diel) and small-scale (across 0.01-0.14 km(2)) spatiotemporal carbonate chemistry variability was assessed within two seagrass meadows in order to determine their short-term potential to elevate seawater pH relative to source seawater. Two locations at similar latitudes were chosen in order to compare systems dominated by coarse calcium carbonate (Bailey's Bay, Bermuda) and muddy silicate (Mission Bay, CA, USA) sediments. In both systems, spatial variability of pH across the seagrass meadow at any given time was often greater than diel variability (e.g., the average range over 24 h) at any one site, with greater spatial variability occurring at low tide in Mission Bay. Mission Bay (spatial Delta pH = 0.08 +/- 0.08; diel Delta pH = 0.12 +/- 0.01; mean +/- SD) had a greater average range in both temporal and spatial seawater chemistry than Bailey's Bay (spatial Delta pH = 0.02 +/- 0.01; diel Delta pH = 0.03 +/- 0.00; mean +/- SD). These differences were most likely due to a combination of slower currents, a larger tidal range, and more favorable weather conditions for photosynthesis (e.g., sunny with no rain) in Mission Bay. In both systems, there was a substantial amount of time (usually at night) when seawater pH within the seagrass beds was lower relative to the source seawater. Future studies aimed at assessing the potential of seagrass ecosystems to act as OA refugia for marine organisms need to account for the small-scale, high-frequency carbonate chemistry variability in both space and time, as this variability will impact where and when OA will be buffered or intensified.