Coastal ocean CO(2)-carbonic acid-carbonate sediment system of the Anthropocene

Citation:
Andersson, AJ, Mackenzie FT, Lerman A.  2006.  Coastal ocean CO(2)-carbonic acid-carbonate sediment system of the Anthropocene. Global Biogeochemical Cycles. 20

Date Published:

Mar

Keywords:

anthropogenic carbon, atmospheric co2, calcium-carbonate, co2 partial-pressure, coccolithophorid emiliania-huxleyi, coral-reef, experimental, interannual variability, magnesian calcites, marine-environment, past 3 centuries

Abstract:

[1] There is little doubt that human activities such as burning of fossil fuels and land use practices have changed and will continue to change the cycling of carbon in the global coastal ocean. In the present study, two biogeochemical box models were used to investigate the consequences of increasing atmospheric CO(2) and subsequent ocean acidification and increasing riverine transport of organic matter and nutrients arising from human activities on land on the global coastal ocean between the years 1700 and 2300. Numerical simulations show that the net flux of CO(2) between coastal ocean surface water and the atmosphere is likely to change during this time from net evasion to net invasion owing to increasing atmospheric CO(2), increasing net ecosystem production arising from increasing nutrient loading to this region, and decreasing net ecosystem calcification due to lower carbonate ion concentration and subsequent lower surface water saturation state with respect to carbonate minerals. Model calculations show that surface water saturation state with respect to calcite will decrease 73% by the year 2300 under a business-as-usual scenario, which in concert with increasing temperature will cause overall biogenic calcification rate to decrease by 90%. Dissolution of carbonate minerals increased by 267% throughout the model simulation. This increase was in part due to increased invasion of atmospheric CO(2), but mainly due to greater deposition and remineralization of land-derived and in situ produced organic matter in the sediments, producing CO(2) that caused pore water pH and carbonate saturation state to decrease. This decrease, in turn, drove selective dissolution of metastable carbonate minerals. As a consequence, the relative carbonate composition of the sediments changed in favor of carbonate phases with lower solubility than that of an average 15 mol% magnesian calcite phase. Model projected changes in surface water carbonate saturation state agree well with observations from the Hawaiian Ocean Time series and the calculated air-sea CO(2) exchanged agrees well with a recent independent estimate of this flux derived from measurements from diverse coastal ecosystems scaled up to the global coastal ocean area.

Notes:

n/a

Website

DOI:

10.1029/2005gb002506

Scripps Publication ID:

Gb1s92